Mister Exam

Other calculators

Integral of (6sqrt(x)+3x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                    
  /                    
 |                     
 |  /    ___      2\   
 |  \6*\/ x  + 3*x / dx
 |                     
/                      
1                      
14(6x+3x2)dx\int\limits_{1}^{4} \left(6 \sqrt{x} + 3 x^{2}\right)\, dx
Integral(6*sqrt(x) + 3*x^2, (x, 1, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      6xdx=6xdx\int 6 \sqrt{x}\, dx = 6 \int \sqrt{x}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

      So, the result is: 4x324 x^{\frac{3}{2}}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    The result is: 4x32+x34 x^{\frac{3}{2}} + x^{3}

  2. Add the constant of integration:

    4x32+x3+constant4 x^{\frac{3}{2}} + x^{3}+ \mathrm{constant}


The answer is:

4x32+x3+constant4 x^{\frac{3}{2}} + x^{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                     
 |                                      
 | /    ___      2\           3      3/2
 | \6*\/ x  + 3*x / dx = C + x  + 4*x   
 |                                      
/                                       
(6x+3x2)dx=C+4x32+x3\int \left(6 \sqrt{x} + 3 x^{2}\right)\, dx = C + 4 x^{\frac{3}{2}} + x^{3}
The graph
1.004.001.251.501.752.002.252.502.753.003.253.503.750100
The answer [src]
91
9191
=
=
91
9191
91
Numerical answer [src]
91.0
91.0

    Use the examples entering the upper and lower limits of integration.