Mister Exam

Other calculators


csc^4(4x)

Integral of csc^4(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     4        
 |  csc (4*x) dx
 |              
/               
0               
01csc4(4x)dx\int\limits_{0}^{1} \csc^{4}{\left(4 x \right)}\, dx
Integral(csc(4*x)^4, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    csc4(4x)=(cot2(4x)+1)csc2(4x)\csc^{4}{\left(4 x \right)} = \left(\cot^{2}{\left(4 x \right)} + 1\right) \csc^{2}{\left(4 x \right)}

  2. Let u=cot(4x)u = \cot{\left(4 x \right)}.

    Then let du=(4cot2(4x)4)dxdu = \left(- 4 \cot^{2}{\left(4 x \right)} - 4\right) dx and substitute dudu:

    (u2414)du\int \left(- \frac{u^{2}}{4} - \frac{1}{4}\right)\, du

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u24)du=u2du4\int \left(- \frac{u^{2}}{4}\right)\, du = - \frac{\int u^{2}\, du}{4}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        So, the result is: u312- \frac{u^{3}}{12}

      1. The integral of a constant is the constant times the variable of integration:

        (14)du=u4\int \left(- \frac{1}{4}\right)\, du = - \frac{u}{4}

      The result is: u312u4- \frac{u^{3}}{12} - \frac{u}{4}

    Now substitute uu back in:

    cot3(4x)12cot(4x)4- \frac{\cot^{3}{\left(4 x \right)}}{12} - \frac{\cot{\left(4 x \right)}}{4}

  3. Now simplify:

    (3+1tan2(4x))cot(4x)12- \frac{\left(3 + \frac{1}{\tan^{2}{\left(4 x \right)}}\right) \cot{\left(4 x \right)}}{12}

  4. Add the constant of integration:

    (3+1tan2(4x))cot(4x)12+constant- \frac{\left(3 + \frac{1}{\tan^{2}{\left(4 x \right)}}\right) \cot{\left(4 x \right)}}{12}+ \mathrm{constant}


The answer is:

(3+1tan2(4x))cot(4x)12+constant- \frac{\left(3 + \frac{1}{\tan^{2}{\left(4 x \right)}}\right) \cot{\left(4 x \right)}}{12}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                       
 |                                  3     
 |    4               cot(4*x)   cot (4*x)
 | csc (4*x) dx = C - -------- - ---------
 |                       4           12   
/                                         
3tan2(4x)+112tan3(4x)-{{3\,\tan ^2\left(4\,x\right)+1}\over{12\,\tan ^3\left(4\,x\right) }}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1000000000000010000000000000
The answer [src]
oo
%a{\it \%a}
=
=
oo
\infty
Numerical answer [src]
3.05246532205413e+54
3.05246532205413e+54
The graph
Integral of csc^4(4x) dx

    Use the examples entering the upper and lower limits of integration.