Integral of csc^4(4x) dx
The solution
Detail solution
-
Rewrite the integrand:
csc4(4x)=(cot2(4x)+1)csc2(4x)
-
Let u=cot(4x).
Then let du=(−4cot2(4x)−4)dx and substitute du:
∫(−4u2−41)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4u2)du=−4∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −12u3
-
The integral of a constant is the constant times the variable of integration:
∫(−41)du=−4u
The result is: −12u3−4u
Now substitute u back in:
−12cot3(4x)−4cot(4x)
-
Now simplify:
−12(3+tan2(4x)1)cot(4x)
-
Add the constant of integration:
−12(3+tan2(4x)1)cot(4x)+constant
The answer is:
−12(3+tan2(4x)1)cot(4x)+constant
The answer (Indefinite)
[src]
/
| 3
| 4 cot(4*x) cot (4*x)
| csc (4*x) dx = C - -------- - ---------
| 4 12
/
−12tan3(4x)3tan2(4x)+1
The graph
Use the examples entering the upper and lower limits of integration.