Mister Exam

Other calculators

Integral of sqrt(5/4-cos(t)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |    ______________   
 |  \/ 5/4 - cos(t)  dt
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sqrt{- \cos{\left(t \right)} + \frac{5}{4}}\, dt$$
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                               /                   
                              |                    
                              |   ______________   
  /                           | \/ 5 - 4*cos(t)  dt
 |                            |                    
 |   ______________          /                     
 | \/ 5/4 - cos(t)  dt = C + ----------------------
 |                                     2           
/                                                  
$$\int {\sqrt{{{5}\over{4}}-\cos t}}{\;dt}$$
The answer [src]
  1                    
  /                    
 |                     
 |    ______________   
 |  \/ 5 - 4*cos(t)  dt
 |                     
/                      
0                      
-----------------------
           2           
$$\int_{0}^{1}{\sqrt{{{5}\over{4}}-\cos t}\;dt}$$
=
=
  1                    
  /                    
 |                     
 |    ______________   
 |  \/ 5 - 4*cos(t)  dt
 |                     
/                      
0                      
-----------------------
           2           
$$\frac{\int\limits_{0}^{1} \sqrt{- 4 \cos{\left(t \right)} + 5}\, dt}{2}$$
Numerical answer [src]
0.630294171345065
0.630294171345065

    Use the examples entering the upper and lower limits of integration.