Mister Exam

Integral of xsenx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*sin(x) dx
 |             
/              
0              
01xsin(x)dx\int\limits_{0}^{1} x \sin{\left(x \right)}\, dx
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=xu{\left(x \right)} = x and let dv(x)=sin(x)\operatorname{dv}{\left(x \right)} = \sin{\left(x \right)}.

    Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

    To find v(x)v{\left(x \right)}:

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    (cos(x))dx=cos(x)dx\int \left(- \cos{\left(x \right)}\right)\, dx = - \int \cos{\left(x \right)}\, dx

    1. The integral of cosine is sine:

      cos(x)dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}

    So, the result is: sin(x)- \sin{\left(x \right)}

  3. Add the constant of integration:

    xcos(x)+sin(x)+constant- x \cos{\left(x \right)} + \sin{\left(x \right)}+ \mathrm{constant}


The answer is:

xcos(x)+sin(x)+constant- x \cos{\left(x \right)} + \sin{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 | x*sin(x) dx = C - x*cos(x) + sin(x)
 |                                    
/                                     
sinxxcosx\sin x-x\,\cos x
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
-cos(1) + sin(1)
sin1cos1\sin 1-\cos 1
=
=
-cos(1) + sin(1)
cos(1)+sin(1)- \cos{\left(1 \right)} + \sin{\left(1 \right)}
Numerical answer [src]
0.301168678939757
0.301168678939757
The graph
Integral of xsenx dx

    Use the examples entering the upper and lower limits of integration.