Mister Exam

Integral of (6cos(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi              
 --              
 2               
  /              
 |               
 |  6*cos(2*x) dx
 |               
/                
pi               
--               
6                
π6π26cos(2x)dx\int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}} 6 \cos{\left(2 x \right)}\, dx
Integral(6*cos(2*x), (x, pi/6, pi/2))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    6cos(2x)dx=6cos(2x)dx\int 6 \cos{\left(2 x \right)}\, dx = 6 \int \cos{\left(2 x \right)}\, dx

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

      Now substitute uu back in:

      sin(2x)2\frac{\sin{\left(2 x \right)}}{2}

    So, the result is: 3sin(2x)3 \sin{\left(2 x \right)}

  2. Add the constant of integration:

    3sin(2x)+constant3 \sin{\left(2 x \right)}+ \mathrm{constant}


The answer is:

3sin(2x)+constant3 \sin{\left(2 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                               
 | 6*cos(2*x) dx = C + 3*sin(2*x)
 |                               
/                                
6cos(2x)dx=C+3sin(2x)\int 6 \cos{\left(2 x \right)}\, dx = C + 3 \sin{\left(2 x \right)}
The graph
0.600.700.800.901.001.101.201.301.401.50-1010
The answer [src]
     ___
-3*\/ 3 
--------
   2    
332- \frac{3 \sqrt{3}}{2}
=
=
     ___
-3*\/ 3 
--------
   2    
332- \frac{3 \sqrt{3}}{2}
Numerical answer [src]
-2.59807621135332
-2.59807621135332
The graph
Integral of (6cos(2x)) dx

    Use the examples entering the upper and lower limits of integration.