Integral of (6cos(2x)) dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫6cos(2x)dx=6∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 3sin(2x)
-
Add the constant of integration:
3sin(2x)+constant
The answer is:
3sin(2x)+constant
The answer (Indefinite)
[src]
/
|
| 6*cos(2*x) dx = C + 3*sin(2*x)
|
/
∫6cos(2x)dx=C+3sin(2x)
The graph
−233
=
−233
Use the examples entering the upper and lower limits of integration.