Integral of 6cos^2x*sinx dx
The solution
Detail solution
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −6du:
∫(−6u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−6∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −2u3
Now substitute u back in:
−2cos3(x)
-
Add the constant of integration:
−2cos3(x)+constant
The answer is:
−2cos3(x)+constant
The answer (Indefinite)
[src]
/
|
| 2 3
| 6*cos (x)*sin(x) dx = C - 2*cos (x)
|
/
∫sin(x)6cos2(x)dx=C−2cos3(x)
The graph
−433
=
−433
Use the examples entering the upper and lower limits of integration.