Mister Exam

Other calculators

Integral of 6cos^2x*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                    
 --                    
 6                     
  /                    
 |                     
 |       2             
 |  6*cos (x)*sin(x) dx
 |                     
/                      
pi                     
--                     
2                      
$$\int\limits_{\frac{\pi}{2}}^{\frac{\pi}{6}} \sin{\left(x \right)} 6 \cos^{2}{\left(x \right)}\, dx$$
Integral((6*cos(x)^2)*sin(x), (x, pi/2, pi/6))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |      2                         3   
 | 6*cos (x)*sin(x) dx = C - 2*cos (x)
 |                                    
/                                     
$$\int \sin{\left(x \right)} 6 \cos^{2}{\left(x \right)}\, dx = C - 2 \cos^{3}{\left(x \right)}$$
The graph
The answer [src]
     ___
-3*\/ 3 
--------
   4    
$$- \frac{3 \sqrt{3}}{4}$$
=
=
     ___
-3*\/ 3 
--------
   4    
$$- \frac{3 \sqrt{3}}{4}$$
-3*sqrt(3)/4
Numerical answer [src]
-1.29903810567666
-1.29903810567666

    Use the examples entering the upper and lower limits of integration.