Mister Exam

Other calculators

Integral of 6cos^2x*sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                    
 --                    
 6                     
  /                    
 |                     
 |       2             
 |  6*cos (x)*sin(x) dx
 |                     
/                      
pi                     
--                     
2                      
π2π6sin(x)6cos2(x)dx\int\limits_{\frac{\pi}{2}}^{\frac{\pi}{6}} \sin{\left(x \right)} 6 \cos^{2}{\left(x \right)}\, dx
Integral((6*cos(x)^2)*sin(x), (x, pi/2, pi/6))
Detail solution
  1. Let u=cos(x)u = \cos{\left(x \right)}.

    Then let du=sin(x)dxdu = - \sin{\left(x \right)} dx and substitute 6du- 6 du:

    (6u2)du\int \left(- 6 u^{2}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      u2du=6u2du\int u^{2}\, du = - 6 \int u^{2}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

      So, the result is: 2u3- 2 u^{3}

    Now substitute uu back in:

    2cos3(x)- 2 \cos^{3}{\left(x \right)}

  2. Add the constant of integration:

    2cos3(x)+constant- 2 \cos^{3}{\left(x \right)}+ \mathrm{constant}


The answer is:

2cos3(x)+constant- 2 \cos^{3}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |      2                         3   
 | 6*cos (x)*sin(x) dx = C - 2*cos (x)
 |                                    
/                                     
sin(x)6cos2(x)dx=C2cos3(x)\int \sin{\left(x \right)} 6 \cos^{2}{\left(x \right)}\, dx = C - 2 \cos^{3}{\left(x \right)}
The graph
0.600.700.800.901.001.101.201.301.401.505-5
The answer [src]
     ___
-3*\/ 3 
--------
   4    
334- \frac{3 \sqrt{3}}{4}
=
=
     ___
-3*\/ 3 
--------
   4    
334- \frac{3 \sqrt{3}}{4}
-3*sqrt(3)/4
Numerical answer [src]
-1.29903810567666
-1.29903810567666

    Use the examples entering the upper and lower limits of integration.