Mister Exam

Other calculators


(x^2+5x+6)cos2x

Integral of (x^2+5x+6)cos2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                           
  /                           
 |                            
 |  / 2          \            
 |  \x  + 5*x + 6/*cos(2*x) dx
 |                            
/                             
2                             
$$\int\limits_{2}^{0} \left(\left(x^{2} + 5 x\right) + 6\right) \cos{\left(2 x \right)}\, dx$$
Integral((x^2 + 5*x + 6)*cos(2*x), (x, 2, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. There are multiple ways to do this integral.

          Method #1

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          Method #2

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of sine is negative cosine:

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      3. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of cosine is sine:

              So, the result is:

            Now substitute back in:

          Now evaluate the sub-integral.

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          So, the result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                                                   
 |                                                                           2                        
 | / 2          \                   5*cos(2*x)   11*sin(2*x)   x*cos(2*x)   x *sin(2*x)   5*x*sin(2*x)
 | \x  + 5*x + 6/*cos(2*x) dx = C + ---------- + ----------- + ---------- + ----------- + ------------
 |                                      4             4            2             2             2      
/                                                                                                     
$$\int \left(\left(x^{2} + 5 x\right) + 6\right) \cos{\left(2 x \right)}\, dx = C + \frac{x^{2} \sin{\left(2 x \right)}}{2} + \frac{5 x \sin{\left(2 x \right)}}{2} + \frac{x \cos{\left(2 x \right)}}{2} + \frac{11 \sin{\left(2 x \right)}}{4} + \frac{5 \cos{\left(2 x \right)}}{4}$$
The graph
The answer [src]
5   39*sin(4)   9*cos(4)
- - --------- - --------
4       4          4    
$$\frac{5}{4} - \frac{9 \cos{\left(4 \right)}}{4} - \frac{39 \sin{\left(4 \right)}}{4}$$
=
=
5   39*sin(4)   9*cos(4)
- - --------- - --------
4       4          4    
$$\frac{5}{4} - \frac{9 \cos{\left(4 \right)}}{4} - \frac{39 \sin{\left(4 \right)}}{4}$$
5/4 - 39*sin(4)/4 - 9*cos(4)/4
Numerical answer [src]
10.0995224761954
10.0995224761954
The graph
Integral of (x^2+5x+6)cos2x dx

    Use the examples entering the upper and lower limits of integration.