Integral of (x^2+5x+6)cos2x dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
((x2+5x)+6)cos(2x)=x2cos(2x)+5xcos(2x)+6cos(2x)
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=cos(2x).
Then du(x)=2x.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(2x).
Then du(x)=1.
To find v(x):
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
Method #2
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(x)cos(x)dx=2∫sin(x)cos(x)dx
-
Let u=cos(x).
Then let du=−sin(x)dx and substitute −du:
∫(−u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=−∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=2u2
So, the result is: −2u2
Now substitute u back in:
−2cos2(x)
So, the result is: −cos2(x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫5xcos(2x)dx=5∫xcos(2x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(2x).
Then du(x)=1.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(2x)dx=2∫sin(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
So, the result is: −4cos(2x)
So, the result is: 25xsin(2x)+45cos(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6cos(2x)dx=6∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 3sin(2x)
The result is: 2x2sin(2x)+25xsin(2x)+2xcos(2x)+411sin(2x)+45cos(2x)
Method #2
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2+5x+6 and let dv(x)=cos(2x).
Then du(x)=2x+5.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x+25 and let dv(x)=sin(2x).
Then du(x)=1.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
Method #3
-
Rewrite the integrand:
((x2+5x)+6)cos(2x)=x2cos(2x)+5xcos(2x)+6cos(2x)
-
Integrate term-by-term:
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x2 and let dv(x)=cos(2x).
Then du(x)=2x.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
Now evaluate the sub-integral.
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=sin(2x).
Then du(x)=1.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2cos(2x))dx=−2∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −4sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫5xcos(2x)dx=5∫xcos(2x)dx
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=cos(2x).
Then du(x)=1.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin(2x)dx=2∫sin(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=2∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −2cos(u)
Now substitute u back in:
−2cos(2x)
So, the result is: −4cos(2x)
So, the result is: 25xsin(2x)+45cos(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6cos(2x)dx=6∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: 3sin(2x)
The result is: 2x2sin(2x)+25xsin(2x)+2xcos(2x)+411sin(2x)+45cos(2x)
-
Add the constant of integration:
2x2sin(2x)+25xsin(2x)+2xcos(2x)+411sin(2x)+45cos(2x)+constant
The answer is:
2x2sin(2x)+25xsin(2x)+2xcos(2x)+411sin(2x)+45cos(2x)+constant
The answer (Indefinite)
[src]
/
| 2
| / 2 \ 5*cos(2*x) 11*sin(2*x) x*cos(2*x) x *sin(2*x) 5*x*sin(2*x)
| \x + 5*x + 6/*cos(2*x) dx = C + ---------- + ----------- + ---------- + ----------- + ------------
| 4 4 2 2 2
/
∫((x2+5x)+6)cos(2x)dx=C+2x2sin(2x)+25xsin(2x)+2xcos(2x)+411sin(2x)+45cos(2x)
The graph
5 39*sin(4) 9*cos(4)
- - --------- - --------
4 4 4
45−49cos(4)−439sin(4)
=
5 39*sin(4) 9*cos(4)
- - --------- - --------
4 4 4
45−49cos(4)−439sin(4)
5/4 - 39*sin(4)/4 - 9*cos(4)/4
Use the examples entering the upper and lower limits of integration.