Mister Exam

Integral of x½dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |  x*1/2*1 dx
 |            
/             
0             
01x121dx\int\limits_{0}^{1} x \frac{1}{2} \cdot 1\, dx
Integral(x*(1/2)*1, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    x121dx=xdx2\int x \frac{1}{2} \cdot 1\, dx = \frac{\int x\, dx}{2}

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: x24\frac{x^{2}}{4}

  2. Add the constant of integration:

    x24+constant\frac{x^{2}}{4}+ \mathrm{constant}


The answer is:

x24+constant\frac{x^{2}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                  2
 |                  x 
 | x*1/2*1 dx = C + --
 |                  4 
/                     
x24{{x^2}\over{4}}
The answer [src]
1/4
14{{1}\over{4}}
=
=
1/4
14\frac{1}{4}
Numerical answer [src]
0.25
0.25

    Use the examples entering the upper and lower limits of integration.