Mister Exam

Other calculators


(5x-4)^4

Integral of (5x-4)^4 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           4   
 |  (5*x - 4)  dx
 |               
/                
0                
01(5x4)4dx\int\limits_{0}^{1} \left(5 x - 4\right)^{4}\, dx
Integral((5*x - 1*4)^4, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=5x4u = 5 x - 4.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      u425du\int \frac{u^{4}}{25}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        u45du=u4du5\int \frac{u^{4}}{5}\, du = \frac{\int u^{4}\, du}{5}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        So, the result is: u525\frac{u^{5}}{25}

      Now substitute uu back in:

      (5x4)525\frac{\left(5 x - 4\right)^{5}}{25}

    Method #2

    1. Rewrite the integrand:

      (5x4)4=625x42000x3+2400x21280x+256\left(5 x - 4\right)^{4} = 625 x^{4} - 2000 x^{3} + 2400 x^{2} - 1280 x + 256

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        625x4dx=625x4dx\int 625 x^{4}\, dx = 625 \int x^{4}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

        So, the result is: 125x5125 x^{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2000x3)dx=2000x3dx\int \left(- 2000 x^{3}\right)\, dx = - 2000 \int x^{3}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

        So, the result is: 500x4- 500 x^{4}

      1. The integral of a constant times a function is the constant times the integral of the function:

        2400x2dx=2400x2dx\int 2400 x^{2}\, dx = 2400 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 800x3800 x^{3}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (1280x)dx=1280xdx\int \left(- 1280 x\right)\, dx = - 1280 \int x\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        So, the result is: 640x2- 640 x^{2}

      1. The integral of a constant is the constant times the variable of integration:

        256dx=256x\int 256\, dx = 256 x

      The result is: 125x5500x4+800x3640x2+256x125 x^{5} - 500 x^{4} + 800 x^{3} - 640 x^{2} + 256 x

  2. Now simplify:

    (5x4)525\frac{\left(5 x - 4\right)^{5}}{25}

  3. Add the constant of integration:

    (5x4)525+constant\frac{\left(5 x - 4\right)^{5}}{25}+ \mathrm{constant}


The answer is:

(5x4)525+constant\frac{\left(5 x - 4\right)^{5}}{25}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                              
 |                              5
 |          4          (5*x - 4) 
 | (5*x - 4)  dx = C + ----------
 |                         25    
/                                
(5x4)4dx=C+(5x4)525\int \left(5 x - 4\right)^{4}\, dx = C + \frac{\left(5 x - 4\right)^{5}}{25}
The graph
0.001.000.100.200.300.400.500.600.700.800.900250
The answer [src]
41
4141
=
=
41
4141
Numerical answer [src]
41.0
41.0
The graph
Integral of (5x-4)^4 dx

    Use the examples entering the upper and lower limits of integration.