Mister Exam

Integral of sint^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     2      
 |  sin (t) dt
 |            
/             
0             
01sin2(t)dt\int\limits_{0}^{1} \sin^{2}{\left(t \right)}\, dt
Integral(sin(t)^2, (t, 0, 1))
Detail solution
  1. Rewrite the integrand:

    sin2(t)=12cos(2t)2\sin^{2}{\left(t \right)} = \frac{1}{2} - \frac{\cos{\left(2 t \right)}}{2}

  2. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      12dt=t2\int \frac{1}{2}\, dt = \frac{t}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (cos(2t)2)dt=cos(2t)dt2\int \left(- \frac{\cos{\left(2 t \right)}}{2}\right)\, dt = - \frac{\int \cos{\left(2 t \right)}\, dt}{2}

      1. Let u=2tu = 2 t.

        Then let du=2dtdu = 2 dt and substitute du2\frac{du}{2}:

        cos(u)4du\int \frac{\cos{\left(u \right)}}{4}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)2du=cos(u)du2\int \frac{\cos{\left(u \right)}}{2}\, du = \frac{\int \cos{\left(u \right)}\, du}{2}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)2\frac{\sin{\left(u \right)}}{2}

        Now substitute uu back in:

        sin(2t)2\frac{\sin{\left(2 t \right)}}{2}

      So, the result is: sin(2t)4- \frac{\sin{\left(2 t \right)}}{4}

    The result is: t2sin(2t)4\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4}

  3. Add the constant of integration:

    t2sin(2t)4+constant\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4}+ \mathrm{constant}


The answer is:

t2sin(2t)4+constant\frac{t}{2} - \frac{\sin{\left(2 t \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |    2             t   sin(2*t)
 | sin (t) dt = C + - - --------
 |                  2      4    
/                               
tsin(2t)22{{t-{{\sin \left(2\,t\right)}\over{2}}}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.01.0
The answer [src]
1   cos(1)*sin(1)
- - -------------
2         2      
sin224-{{\sin 2-2}\over{4}}
=
=
1   cos(1)*sin(1)
- - -------------
2         2      
sin(1)cos(1)2+12- \frac{\sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{1}{2}
Numerical answer [src]
0.27267564329358
0.27267564329358
The graph
Integral of sint^2 dx

    Use the examples entering the upper and lower limits of integration.