Mister Exam

Integral of 4cosx-3sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                         
 --                         
 2                          
  /                         
 |                          
 |  (4*cos(x) - 3*sin(x)) dx
 |                          
/                           
pi                          
--                          
4                           
$$\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(- 3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}\right)\, dx$$
Integral(4*cos(x) - 3*sin(x), (x, pi/4, pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (4*cos(x) - 3*sin(x)) dx = C + 3*cos(x) + 4*sin(x)
 |                                                   
/                                                    
$$4\,\sin x+3\,\cos x$$
The answer [src]
        ___
    7*\/ 2 
4 - -------
       2   
$$4\,\sin \left({{\pi}\over{2}}\right)+3\,\cos \left({{\pi}\over{2}} \right)-4\,\sin \left({{\pi}\over{4}}\right)-3\,\cos \left({{\pi }\over{4}}\right)$$
=
=
        ___
    7*\/ 2 
4 - -------
       2   
$$4 - \frac{7 \sqrt{2}}{2}$$
Numerical answer [src]
-0.949747468305832
-0.949747468305832

    Use the examples entering the upper and lower limits of integration.