Mister Exam

Integral of 4cosx+3sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 POST_GRBEK_SMALL_pi                        
 -------------------                        
          2                                 
          /                                 
         |                                  
         |          (4*cos(x) + 3*sin(x)) dx
         |                                  
        /                                   
POST_GRBEK_SMALL_pi                         
-------------------                         
         3                                  
$$\int\limits_{\frac{POST_{GRBEK SMALL \pi}}{3}}^{\frac{POST_{GRBEK SMALL \pi}}{2}} \left(3 \sin{\left(x \right)} + 4 \cos{\left(x \right)}\right)\, dx$$
Integral(4*cos(x) + 3*sin(x), (x, POST_GRBEK_SMALL_pi/3, POST_GRBEK_SMALL_pi/2))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 | (4*cos(x) + 3*sin(x)) dx = C - 3*cos(x) + 4*sin(x)
 |                                                   
/                                                    
$$4\,\sin x-3\,\cos x$$
The answer [src]
       /POST_GRBEK_SMALL_pi\        /POST_GRBEK_SMALL_pi\        /POST_GRBEK_SMALL_pi\        /POST_GRBEK_SMALL_pi\
- 4*sin|-------------------| - 3*cos|-------------------| + 3*cos|-------------------| + 4*sin|-------------------|
       \         3         /        \         2         /        \         3         /        \         2         /
$$4\,\sin \left({{{\it POST\_GRBEK\_SMALL\_pi}}\over{2}}\right)-3\, \cos \left({{{\it POST\_GRBEK\_SMALL\_pi}}\over{2}}\right)-4\,\sin \left({{{\it POST\_GRBEK\_SMALL\_pi}}\over{3}}\right)+3\,\cos \left( {{{\it POST\_GRBEK\_SMALL\_pi}}\over{3}}\right)$$
=
=
       /POST_GRBEK_SMALL_pi\        /POST_GRBEK_SMALL_pi\        /POST_GRBEK_SMALL_pi\        /POST_GRBEK_SMALL_pi\
- 4*sin|-------------------| - 3*cos|-------------------| + 3*cos|-------------------| + 4*sin|-------------------|
       \         3         /        \         2         /        \         3         /        \         2         /
$$- 4 \sin{\left(\frac{POST_{GRBEK SMALL \pi}}{3} \right)} + 4 \sin{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)} + 3 \cos{\left(\frac{POST_{GRBEK SMALL \pi}}{3} \right)} - 3 \cos{\left(\frac{POST_{GRBEK SMALL \pi}}{2} \right)}$$

    Use the examples entering the upper and lower limits of integration.