POST_GRBEK_SMALL_pi
-------------------
2
/
|
| (4*cos(x) + 3*sin(x)) dx
|
/
POST_GRBEK_SMALL_pi
-------------------
3
Integral(4*cos(x) + 3*sin(x), (x, POST_GRBEK_SMALL_pi/3, POST_GRBEK_SMALL_pi/2))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | (4*cos(x) + 3*sin(x)) dx = C - 3*cos(x) + 4*sin(x) | /
/POST_GRBEK_SMALL_pi\ /POST_GRBEK_SMALL_pi\ /POST_GRBEK_SMALL_pi\ /POST_GRBEK_SMALL_pi\
- 4*sin|-------------------| - 3*cos|-------------------| + 3*cos|-------------------| + 4*sin|-------------------|
\ 3 / \ 2 / \ 3 / \ 2 /
=
/POST_GRBEK_SMALL_pi\ /POST_GRBEK_SMALL_pi\ /POST_GRBEK_SMALL_pi\ /POST_GRBEK_SMALL_pi\
- 4*sin|-------------------| - 3*cos|-------------------| + 3*cos|-------------------| + 4*sin|-------------------|
\ 3 / \ 2 / \ 3 / \ 2 /
Use the examples entering the upper and lower limits of integration.