Mister Exam

Other calculators

tg3x<=0 inequation

A inequation with variable

The solution

You have entered [src]
tan(3*x) <= 0
$$\tan{\left(3 x \right)} \leq 0$$
tan(3*x) <= 0
Detail solution
Given the inequality:
$$\tan{\left(3 x \right)} \leq 0$$
To solve this inequality, we must first solve the corresponding equation:
$$\tan{\left(3 x \right)} = 0$$
Solve:
Given the equation
$$\tan{\left(3 x \right)} = 0$$
- this is the simplest trigonometric equation
with the change of sign in 0

We get:
$$\tan{\left(3 x \right)} = 0$$
This equation is transformed to
$$3 x = \pi n + \operatorname{atan}{\left(0 \right)}$$
Or
$$3 x = \pi n$$
, where n - is a integer
Divide both parts of the equation by
$$3$$
$$x_{1} = \frac{\pi n}{3}$$
$$x_{1} = \frac{\pi n}{3}$$
This roots
$$x_{1} = \frac{\pi n}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\frac{\pi n}{3} + - \frac{1}{10}$$
=
$$\frac{\pi n}{3} - \frac{1}{10}$$
substitute to the expression
$$\tan{\left(3 x \right)} \leq 0$$
$$\tan{\left(3 \left(\frac{\pi n}{3} - \frac{1}{10}\right) \right)} \leq 0$$
tan(-3/10 + pi*n) <= 0

the solution of our inequality is:
$$x \leq \frac{\pi n}{3}$$
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
Rapid solution [src]
  /   /     pi  pi    \       \
Or|And|x <= --, -- < x|, x = 0|
  \   \     3   6     /       /
$$\left(x \leq \frac{\pi}{3} \wedge \frac{\pi}{6} < x\right) \vee x = 0$$
(x = 0))∨((x <= pi/3)∧(pi/6 < x)
Rapid solution 2 [src]
       pi  pi 
{0} U (--, --]
       6   3  
$$x\ in\ \left\{0\right\} \cup \left(\frac{\pi}{6}, \frac{\pi}{3}\right]$$
x in Union(FiniteSet(0), Interval.Lopen(pi/6, pi/3))