Mister Exam

Graphing y = tg3x

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(x) = tan(3*x)
f(x)=tan(3x)f{\left(x \right)} = \tan{\left(3 x \right)}
f = tan(3*x)
The graph of the function
3.00.00.51.01.52.02.5-0.5-500000500000
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
tan(3x)=0\tan{\left(3 x \right)} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=12.5663706143592x_{1} = 12.5663706143592
x2=98.4365698124802x_{2} = 98.4365698124802
x3=13.6135681655558x_{3} = -13.6135681655558
x4=78.5398163397448x_{4} = 78.5398163397448
x5=96.342174710087x_{5} = 96.342174710087
x6=92.1533845053006x_{6} = -92.1533845053006
x7=65.9734457253857x_{7} = -65.9734457253857
x8=83.7758040957278x_{8} = -83.7758040957278
x9=15.707963267949x_{9} = -15.707963267949
x10=50.2654824574367x_{10} = 50.2654824574367
x11=81.6814089933346x_{11} = 81.6814089933346
x12=48.1710873550435x_{12} = -48.1710873550435
x13=57.5958653158129x_{13} = -57.5958653158129
x14=76.4454212373516x_{14} = 76.4454212373516
x15=63.8790506229925x_{15} = 63.8790506229925
x16=75.398223686155x_{16} = -75.398223686155
x17=24.0855436775217x_{17} = -24.0855436775217
x18=8.37758040957278x_{18} = 8.37758040957278
x19=2.0943951023932x_{19} = -2.0943951023932
x20=41.8879020478639x_{20} = 41.8879020478639
x21=56.5486677646163x_{21} = 56.5486677646163
x22=80.634211442138x_{22} = 80.634211442138
x23=70.162235930172x_{23} = 70.162235930172
x24=19.8967534727354x_{24} = -19.8967534727354
x25=39.7935069454707x_{25} = -39.7935069454707
x26=15.707963267949x_{26} = 15.707963267949
x27=96.342174710087x_{27} = -96.342174710087
x28=41.8879020478639x_{28} = -41.8879020478639
x29=59.6902604182061x_{29} = -59.6902604182061
x30=35.6047167406843x_{30} = -35.6047167406843
x31=21.9911485751286x_{31} = 21.9911485751286
x32=6.28318530717959x_{32} = 6.28318530717959
x33=26.1799387799149x_{33} = 26.1799387799149
x34=87.9645943005142x_{34} = -87.9645943005142
x35=39.7935069454707x_{35} = 39.7935069454707
x36=48.1710873550435x_{36} = 48.1710873550435
x37=28.2743338823081x_{37} = -28.2743338823081
x38=77.4926187885482x_{38} = -77.4926187885482
x39=9.42477796076938x_{39} = -9.42477796076938
x40=59.6902604182061x_{40} = 59.6902604182061
x41=68.0678408277789x_{41} = -68.0678408277789
x42=58.6430628670095x_{42} = 58.6430628670095
x43=28.2743338823081x_{43} = 28.2743338823081
x44=94.2477796076938x_{44} = 94.2477796076938
x45=72.2566310325652x_{45} = -72.2566310325652
x46=52.3598775598299x_{46} = 52.3598775598299
x47=74.3510261349584x_{47} = -74.3510261349584
x48=97.3893722612836x_{48} = -97.3893722612836
x49=37.6991118430775x_{49} = 37.6991118430775
x50=85.870199198121x_{50} = 85.870199198121
x51=33.5103216382911x_{51} = -33.5103216382911
x52=50.2654824574367x_{52} = -50.2654824574367
x53=94.2477796076938x_{53} = -94.2477796076938
x54=17.8023583703422x_{54} = 17.8023583703422
x55=92.1533845053006x_{55} = 92.1533845053006
x56=63.8790506229925x_{56} = -63.8790506229925
x57=24.0855436775217x_{57} = 24.0855436775217
x58=2.0943951023932x_{58} = 2.0943951023932
x59=7.33038285837618x_{59} = -7.33038285837618
x60=32.4631240870945x_{60} = 32.4631240870945
x61=37.6991118430775x_{61} = -37.6991118430775
x62=14.6607657167524x_{62} = 14.6607657167524
x63=83.7758040957278x_{63} = 83.7758040957278
x64=10.471975511966x_{64} = 10.471975511966
x65=52.3598775598299x_{65} = -52.3598775598299
x66=19.8967534727354x_{66} = 19.8967534727354
x67=90.0589894029074x_{67} = -90.0589894029074
x68=74.3510261349584x_{68} = 74.3510261349584
x69=54.4542726622231x_{69} = 54.4542726622231
x70=26.1799387799149x_{70} = -26.1799387799149
x71=61.7846555205993x_{71} = -61.7846555205993
x72=46.0766922526503x_{72} = 46.0766922526503
x73=4.18879020478639x_{73} = 4.18879020478639
x74=81.6814089933346x_{74} = -81.6814089933346
x75=43.9822971502571x_{75} = 43.9822971502571
x76=46.0766922526503x_{76} = -46.0766922526503
x77=17.8023583703422x_{77} = -17.8023583703422
x78=36.6519142918809x_{78} = 36.6519142918809
x79=31.4159265358979x_{79} = -31.4159265358979
x80=99.4837673636768x_{80} = -99.4837673636768
x81=0x_{81} = 0
x82=30.3687289847013x_{82} = 30.3687289847013
x83=68.0678408277789x_{83} = 68.0678408277789
x84=61.7846555205993x_{84} = 61.7846555205993
x85=21.9911485751286x_{85} = -21.9911485751286
x86=79.5870138909414x_{86} = -79.5870138909414
x87=55.5014702134197x_{87} = -55.5014702134197
x88=100.530964914873x_{88} = 100.530964914873
x89=34.5575191894877x_{89} = 34.5575191894877
x90=65.9734457253857x_{90} = 65.9734457253857
x91=85.870199198121x_{91} = -85.870199198121
x92=11.5191730631626x_{92} = -11.5191730631626
x93=53.4070751110265x_{93} = -53.4070751110265
x94=6.28318530717959x_{94} = -6.28318530717959
x95=30.3687289847013x_{95} = -30.3687289847013
x96=90.0589894029074x_{96} = 90.0589894029074
x97=43.9822971502571x_{97} = -43.9822971502571
x98=4.18879020478639x_{98} = -4.18879020478639
x99=72.2566310325652x_{99} = 72.2566310325652
x100=70.162235930172x_{100} = -70.162235930172
x101=87.9645943005142x_{101} = 87.9645943005142
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to tan(3*x).
tan(03)\tan{\left(0 \cdot 3 \right)}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
3tan2(3x)+3=03 \tan^{2}{\left(3 x \right)} + 3 = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
18(tan2(3x)+1)tan(3x)=018 \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)} = 0
Solve this equation
The roots of this equation
x1=0x_{1} = 0

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[0,)\left[0, \infty\right)
Convex at the intervals
(,0]\left(-\infty, 0\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limxtan(3x)=,\lim_{x \to -\infty} \tan{\left(3 x \right)} = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=,y = \left\langle -\infty, \infty\right\rangle
limxtan(3x)=,\lim_{x \to \infty} \tan{\left(3 x \right)} = \left\langle -\infty, \infty\right\rangle
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=,y = \left\langle -\infty, \infty\right\rangle
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of tan(3*x), divided by x at x->+oo and x ->-oo
True

Let's take the limit
so,
inclined asymptote equation on the left:
y=xlimx(tan(3x)x)y = x \lim_{x \to -\infty}\left(\frac{\tan{\left(3 x \right)}}{x}\right)
True

Let's take the limit
so,
inclined asymptote equation on the right:
y=xlimx(tan(3x)x)y = x \lim_{x \to \infty}\left(\frac{\tan{\left(3 x \right)}}{x}\right)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
tan(3x)=tan(3x)\tan{\left(3 x \right)} = - \tan{\left(3 x \right)}
- No
tan(3x)=tan(3x)\tan{\left(3 x \right)} = \tan{\left(3 x \right)}
- Yes
so, the function
is
odd