Mister Exam

Other calculators

3^(x+2)>81 inequation

A inequation with variable

The solution

You have entered [src]
 x + 2     
3      > 81
3x+2>813^{x + 2} > 81
3^(x + 2) > 81
Detail solution
Given the inequality:
3x+2>813^{x + 2} > 81
To solve this inequality, we must first solve the corresponding equation:
3x+2=813^{x + 2} = 81
Solve:
Given the equation:
3x+2=813^{x + 2} = 81
or
3x+281=03^{x + 2} - 81 = 0
or
93x=819 \cdot 3^{x} = 81
or
3x=93^{x} = 9
- this is the simplest exponential equation
Do replacement
v=3xv = 3^{x}
we get
v9=0v - 9 = 0
or
v9=0v - 9 = 0
Move free summands (without v)
from left part to right part, we given:
v=9v = 9
do backward replacement
3x=v3^{x} = v
or
x=log(v)log(3)x = \frac{\log{\left(v \right)}}{\log{\left(3 \right)}}
x1=9x_{1} = 9
x1=9x_{1} = 9
This roots
x1=9x_{1} = 9
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+9- \frac{1}{10} + 9
=
8910\frac{89}{10}
substitute to the expression
3x+2>813^{x + 2} > 81
32+8910>813^{2 + \frac{89}{10}} > 81
       9/10     
59049*3     > 81
     

the solution of our inequality is:
x<9x < 9
 _____          
      \    
-------ο-------
       x1
Solving inequality on a graph
-5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.002000
Rapid solution 2 [src]
(2, oo)
x in (2,)x\ in\ \left(2, \infty\right)
x in Interval.open(2, oo)
Rapid solution [src]
2 < x
2<x2 < x
2 < x