Mister Exam

Other calculators

ctg(3x+pi/3)<√3 inequation

A inequation with variable

The solution

You have entered [src]
   /      pi\     ___
cot|3*x + --| < \/ 3 
   \      3 /        
$$\cot{\left(3 x + \frac{\pi}{3} \right)} < \sqrt{3}$$
cot(3*x + pi/3) < sqrt(3)
Detail solution
Given the inequality:
$$\cot{\left(3 x + \frac{\pi}{3} \right)} < \sqrt{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(3 x + \frac{\pi}{3} \right)} = \sqrt{3}$$
Solve:
$$x_{1} = - \frac{\pi}{18}$$
$$x_{1} = - \frac{\pi}{18}$$
This roots
$$x_{1} = - \frac{\pi}{18}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{\pi}{18} - \frac{1}{10}$$
=
$$- \frac{\pi}{18} - \frac{1}{10}$$
substitute to the expression
$$\cot{\left(3 x + \frac{\pi}{3} \right)} < \sqrt{3}$$
$$\cot{\left(3 \left(- \frac{\pi}{18} - \frac{1}{10}\right) + \frac{\pi}{3} \right)} < \sqrt{3}$$
   /3    pi\     ___
tan|-- + --| < \/ 3 
   \10   3 /   

but
   /3    pi\     ___
tan|-- + --| > \/ 3 
   \10   3 /   

Then
$$x < - \frac{\pi}{18}$$
no execute
the solution of our inequality is:
$$x > - \frac{\pi}{18}$$
         _____  
        /
-------ο-------
       x1