Mister Exam

Other calculators

sin(x)=>-sqrt3/2 inequation

A inequation with variable

The solution

You have entered [src]
             ___ 
          -\/ 3  
sin(x) >= -------
             2   
$$\sin{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}$$
sin(x) >= (-sqrt(3))/2
Detail solution
Given the inequality:
$$\sin{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$x = 2 \pi n - \frac{\pi}{3}$$
$$x = 2 \pi n + \frac{4 \pi}{3}$$
, where n - is a integer
$$x_{1} = 2 \pi n - \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{4 \pi}{3}$$
$$x_{1} = 2 \pi n - \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{4 \pi}{3}$$
This roots
$$x_{1} = 2 \pi n - \frac{\pi}{3}$$
$$x_{2} = 2 \pi n + \frac{4 \pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n - \frac{\pi}{3}\right) + - \frac{1}{10}$$
=
$$2 \pi n - \frac{\pi}{3} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(x \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\sin{\left(2 \pi n - \frac{\pi}{3} - \frac{1}{10} \right)} \geq \frac{\left(-1\right) \sqrt{3}}{2}$$
                             ___ 
    /1    pi         \    -\/ 3  
-sin|-- + -- - 2*pi*n| >= -------
    \10   3          /       2   
                          

but
                            ___ 
    /1    pi         \   -\/ 3  
-sin|-- + -- - 2*pi*n| < -------
    \10   3          /      2   
                         

Then
$$x \leq 2 \pi n - \frac{\pi}{3}$$
no execute
one of the solutions of our inequality is:
$$x \geq 2 \pi n - \frac{\pi}{3} \wedge x \leq 2 \pi n + \frac{4 \pi}{3}$$
         _____  
        /     \  
-------•-------•-------
       x1      x2
Solving inequality on a graph
Rapid solution 2 [src]
    4*pi     5*pi       
[0, ----] U [----, 2*pi]
     3        3         
$$x\ in\ \left[0, \frac{4 \pi}{3}\right] \cup \left[\frac{5 \pi}{3}, 2 \pi\right]$$
x in Union(Interval(0, 4*pi/3), Interval(5*pi/3, 2*pi))
Rapid solution [src]
  /   /             4*pi\     /5*pi                \\
Or|And|0 <= x, x <= ----|, And|---- <= x, x <= 2*pi||
  \   \              3  /     \ 3                  //
$$\left(0 \leq x \wedge x \leq \frac{4 \pi}{3}\right) \vee \left(\frac{5 \pi}{3} \leq x \wedge x \leq 2 \pi\right)$$
((0 <= x)∧(x <= 4*pi/3))∨((5*pi/3 <= x)∧(x <= 2*pi))