Given the inequality:
$$\sin{\left(x \right)} < - \frac{1}{4}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(x \right)} = - \frac{1}{4}$$
Solve:
Given the equation
$$\sin{\left(x \right)} = - \frac{1}{4}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(- \frac{1}{4} \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(- \frac{1}{4} \right)} + \pi$$
Or
$$x = 2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}$$
$$x = 2 \pi n + \operatorname{asin}{\left(\frac{1}{4} \right)} + \pi$$
, where n - is a integer
$$x_{1} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{4} \right)} + \pi$$
$$x_{1} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{4} \right)} + \pi$$
This roots
$$x_{1} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}$$
$$x_{2} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{4} \right)} + \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}\right) + - \frac{1}{10}$$
=
$$2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(x \right)} < - \frac{1}{4}$$
$$\sin{\left(2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)} - \frac{1}{10} \right)} < - \frac{1}{4}$$
-sin(1/10 - 2*pi*n + asin(1/4)) < -1/4
one of the solutions of our inequality is:
$$x < 2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}$$
_____ _____
\ /
-------ο-------ο-------
x1 x2
Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < 2 \pi n - \operatorname{asin}{\left(\frac{1}{4} \right)}$$
$$x > 2 \pi n + \operatorname{asin}{\left(\frac{1}{4} \right)} + \pi$$