Mister Exam

Other calculators

arcsinx-arccosx>0 inequation

A inequation with variable

The solution

You have entered [src]
asin(x) - acos(x) > 0
acos(x)+asin(x)>0- \operatorname{acos}{\left(x \right)} + \operatorname{asin}{\left(x \right)} > 0
-acos(x) + asin(x) > 0
Detail solution
Given the inequality:
acos(x)+asin(x)>0- \operatorname{acos}{\left(x \right)} + \operatorname{asin}{\left(x \right)} > 0
To solve this inequality, we must first solve the corresponding equation:
acos(x)+asin(x)=0- \operatorname{acos}{\left(x \right)} + \operatorname{asin}{\left(x \right)} = 0
Solve:
x1=0.707106781186548x_{1} = 0.707106781186548
x1=0.707106781186548x_{1} = 0.707106781186548
This roots
x1=0.707106781186548x_{1} = 0.707106781186548
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0<x1x_{0} < x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+0.707106781186548- \frac{1}{10} + 0.707106781186548
=
0.6071067811865480.607106781186548
substitute to the expression
acos(x)+asin(x)>0- \operatorname{acos}{\left(x \right)} + \operatorname{asin}{\left(x \right)} > 0
acos(0.607106781186548)+asin(0.607106781186548)>0- \operatorname{acos}{\left(0.607106781186548 \right)} + \operatorname{asin}{\left(0.607106781186548 \right)} > 0
-0.265967334228303 > 0

Then
x<0.707106781186548x < 0.707106781186548
no execute
the solution of our inequality is:
x>0.707106781186548x > 0.707106781186548
         _____  
        /
-------ο-------
       x1
Solving inequality on a graph
02468-8-6-4-2105-5