Mister Exam

Other calculators

  • How to use it?

  • Inequation:
  • 7x<-3
  • (2^-x)<1/4
  • 14logax+19/logax^2+4<1
  • 2x/3-(x+)1/4<=-2
  • Identical expressions

  • - two *sin(x/ two)*cos(x/ two)> zero
  • minus 2 multiply by sinus of (x divide by 2) multiply by co sinus of e of (x divide by 2) greater than 0
  • minus two multiply by sinus of (x divide by two) multiply by co sinus of e of (x divide by two) greater than zero
  • -2sin(x/2)cos(x/2)>0
  • -2sinx/2cosx/2>0
  • -2*sin(x divide by 2)*cos(x divide by 2)>0
  • Similar expressions

  • 2*sin(x/2)*cos(x/2)>0

-2*sin(x/2)*cos(x/2)>0 inequation

A inequation with variable

The solution

You have entered [src]
      /x\    /x\    
-2*sin|-|*cos|-| > 0
      \2/    \2/    
$$- 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} > 0$$
(-2*sin(x/2))*cos(x/2) > 0
Detail solution
Given the inequality:
$$- 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} > 0$$
To solve this inequality, we must first solve the corresponding equation:
$$- 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} = 0$$
Solve:
$$x_{1} = 0$$
$$x_{2} = - \pi$$
$$x_{3} = \pi$$
$$x_{1} = 0$$
$$x_{2} = - \pi$$
$$x_{3} = \pi$$
This roots
$$x_{2} = - \pi$$
$$x_{1} = 0$$
$$x_{3} = \pi$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{2}$$
For example, let's take the point
$$x_{0} = x_{2} - \frac{1}{10}$$
=
$$- \pi - \frac{1}{10}$$
=
$$- \pi - \frac{1}{10}$$
substitute to the expression
$$- 2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)} > 0$$
$$- 2 \sin{\left(\frac{- \pi - \frac{1}{10}}{2} \right)} \cos{\left(\frac{- \pi - \frac{1}{10}}{2} \right)} > 0$$
-2*cos(1/20)*sin(1/20) > 0

Then
$$x < - \pi$$
no execute
one of the solutions of our inequality is:
$$x > - \pi \wedge x < 0$$
         _____           _____  
        /     \         /
-------ο-------ο-------ο-------
       x2      x1      x3

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > - \pi \wedge x < 0$$
$$x > \pi$$
Solving inequality on a graph
Rapid solution 2 [src]
(pi, 2*pi)
$$x\ in\ \left(\pi, 2 \pi\right)$$
x in Interval.open(pi, 2*pi)
Rapid solution [src]
And(pi < x, x < 2*pi)
$$\pi < x \wedge x < 2 \pi$$
(pi < x)∧(x < 2*pi)