Mister Exam

Other calculators

sin(3*x)>-sqrt(3)/2 inequation

A inequation with variable

The solution

You have entered [src]
              ___ 
           -\/ 3  
sin(3*x) > -------
              2   
$$\sin{\left(3 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
sin(3*x) > (-sqrt(3))/2
Detail solution
Given the inequality:
$$\sin{\left(3 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(3 x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
Solve:
Given the equation
$$\sin{\left(3 x \right)} = \frac{\left(-1\right) \sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$3 x = 2 \pi n + \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)}$$
$$3 x = 2 \pi n - \operatorname{asin}{\left(- \frac{\sqrt{3}}{2} \right)} + \pi$$
Or
$$3 x = 2 \pi n - \frac{\pi}{3}$$
$$3 x = 2 \pi n + \frac{4 \pi}{3}$$
, where n - is a integer
Divide both parts of the equation by
$$3$$
$$x_{1} = \frac{2 \pi n}{3} - \frac{\pi}{9}$$
$$x_{2} = \frac{2 \pi n}{3} + \frac{4 \pi}{9}$$
$$x_{1} = \frac{2 \pi n}{3} - \frac{\pi}{9}$$
$$x_{2} = \frac{2 \pi n}{3} + \frac{4 \pi}{9}$$
This roots
$$x_{1} = \frac{2 \pi n}{3} - \frac{\pi}{9}$$
$$x_{2} = \frac{2 \pi n}{3} + \frac{4 \pi}{9}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{2 \pi n}{3} - \frac{\pi}{9}\right) + - \frac{1}{10}$$
=
$$\frac{2 \pi n}{3} - \frac{\pi}{9} - \frac{1}{10}$$
substitute to the expression
$$\sin{\left(3 x \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
$$\sin{\left(3 \left(\frac{2 \pi n}{3} - \frac{\pi}{9} - \frac{1}{10}\right) \right)} > \frac{\left(-1\right) \sqrt{3}}{2}$$
                            ___ 
    /3    pi         \   -\/ 3  
-sin|-- + -- - 2*pi*n| > -------
    \10   3          /      2   
                         

Then
$$x < \frac{2 \pi n}{3} - \frac{\pi}{9}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{2 \pi n}{3} - \frac{\pi}{9} \wedge x < \frac{2 \pi n}{3} + \frac{4 \pi}{9}$$
         _____  
        /     \  
-------ο-------ο-------
       x1      x2
Solving inequality on a graph
Rapid solution [src]
  /   /            4*pi\     /     2*pi  5*pi    \\
Or|And|0 <= x, x < ----|, And|x <= ----, ---- < x||
  \   \             9  /     \      3     9      //
$$\left(0 \leq x \wedge x < \frac{4 \pi}{9}\right) \vee \left(x \leq \frac{2 \pi}{3} \wedge \frac{5 \pi}{9} < x\right)$$
((0 <= x)∧(x < 4*pi/9))∨((x <= 2*pi/3)∧(5*pi/9 < x))
Rapid solution 2 [src]
    4*pi     5*pi  2*pi 
[0, ----) U (----, ----]
     9        9     3   
$$x\ in\ \left[0, \frac{4 \pi}{9}\right) \cup \left(\frac{5 \pi}{9}, \frac{2 \pi}{3}\right]$$
x in Union(Interval.Ropen(0, 4*pi/9), Interval.Lopen(5*pi/9, 2*pi/3))