Mister Exam

Other calculators

logsqrt3x<=2 inequation

A inequation with variable

The solution

You have entered [src]
   /  _____\     
log\\/ 3*x / <= 2
log(3x)2\log{\left(\sqrt{3 x} \right)} \leq 2
log(sqrt(3*x)) <= 2
Detail solution
Given the inequality:
log(3x)2\log{\left(\sqrt{3 x} \right)} \leq 2
To solve this inequality, we must first solve the corresponding equation:
log(3x)=2\log{\left(\sqrt{3 x} \right)} = 2
Solve:
x1=e43x_{1} = \frac{e^{4}}{3}
x1=e43x_{1} = \frac{e^{4}}{3}
This roots
x1=e43x_{1} = \frac{e^{4}}{3}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x1x_{0} \leq x_{1}
For example, let's take the point
x0=x1110x_{0} = x_{1} - \frac{1}{10}
=
110+e43- \frac{1}{10} + \frac{e^{4}}{3}
=
110+e43- \frac{1}{10} + \frac{e^{4}}{3}
substitute to the expression
log(3x)2\log{\left(\sqrt{3 x} \right)} \leq 2
log(3(110+e43))2\log{\left(\sqrt{3 \left(- \frac{1}{10} + \frac{e^{4}}{3}\right)} \right)} \leq 2
   /    ___________\     
   |   /   3     4 |     
log|  /  - -- + e  | <= 2
   \\/     10      /     
     

the solution of our inequality is:
xe43x \leq \frac{e^{4}}{3}
 _____          
      \    
-------•-------
       x1
Solving inequality on a graph
0-30-20-10102030405060705-5
Rapid solution [src]
   /      4       \
   |     e        |
And|x <= --, 0 < x|
   \     3        /
xe430<xx \leq \frac{e^{4}}{3} \wedge 0 < x
(0 < x)∧(x <= exp(4)/3)
Rapid solution 2 [src]
     4 
    e  
(0, --]
    3  
x in (0,e43]x\ in\ \left(0, \frac{e^{4}}{3}\right]
x in Interval.Lopen(0, exp(4)/3)