Given the inequality:
$$\log{\left(\sqrt{3 x} \right)} \leq 2$$
To solve this inequality, we must first solve the corresponding equation:
$$\log{\left(\sqrt{3 x} \right)} = 2$$
Solve:
$$x_{1} = \frac{e^{4}}{3}$$
$$x_{1} = \frac{e^{4}}{3}$$
This roots
$$x_{1} = \frac{e^{4}}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$- \frac{1}{10} + \frac{e^{4}}{3}$$
=
$$- \frac{1}{10} + \frac{e^{4}}{3}$$
substitute to the expression
$$\log{\left(\sqrt{3 x} \right)} \leq 2$$
$$\log{\left(\sqrt{3 \left(- \frac{1}{10} + \frac{e^{4}}{3}\right)} \right)} \leq 2$$
/ ___________\
| / 3 4 |
log| / - -- + e | <= 2
\\/ 10 /
the solution of our inequality is:
$$x \leq \frac{e^{4}}{3}$$
_____
\
-------•-------
x1