Mister Exam

Other calculators

sint<0,4 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) < 2/5
$$\sin{\left(t \right)} < \frac{2}{5}$$
sin(t) < 2/5
Detail solution
Given the inequality:
$$\sin{\left(t \right)} < \frac{2}{5}$$
To solve this inequality, we must first solve the corresponding equation:
$$\sin{\left(t \right)} = \frac{2}{5}$$
Solve:
Given the equation
$$\sin{\left(t \right)} = \frac{2}{5}$$
transform
$$\sin{\left(t \right)} - \frac{2}{5} = 0$$
$$\sin{\left(t \right)} - \frac{2}{5} = 0$$
Do replacement
$$w = \sin{\left(t \right)}$$
Move free summands (without w)
from left part to right part, we given:
$$w = \frac{2}{5}$$
We get the answer: w = 2/5
do backward replacement
$$\sin{\left(t \right)} = w$$
substitute w:
$$x_{1} = 100.942481760941$$
$$x_{2} = 44.3938139963246$$
$$x_{3} = 50.6769993035042$$
$$x_{4} = 96.9778554152161$$
$$x_{5} = 78.1282994936773$$
$$x_{6} = 69.5265552250429$$
$$x_{7} = 34.1460023434202$$
$$x_{8} = -68.703521532908$$
$$x_{9} = -16.1194801140165$$
$$x_{10} = -62.4203362257284$$
$$x_{11} = 88.3761111465817$$
$$x_{12} = -49.8539656113692$$
$$x_{13} = -72.6681478786327$$
$$x_{14} = 82.0929258394021$$
$$x_{15} = -18.4380390754713$$
$$x_{16} = -22.402665421196$$
$$x_{17} = -24.7212243826509$$
$$x_{18} = -85.2345184929919$$
$$x_{19} = -41.2522213427348$$
$$x_{20} = 19.2610727676062$$
$$x_{21} = -3.55310949965728$$
$$x_{22} = -66.3849625714531$$
$$x_{23} = 52.995558264959$$
$$x_{24} = -97.8008891073511$$
$$x_{25} = -87.5530774544467$$
$$x_{26} = 2.73007580752231$$
$$x_{27} = 12.9778874604267$$
$$x_{28} = -60.1017772642736$$
$$x_{29} = 56.9601846106838$$
$$x_{30} = 65.5619288793182$$
$$x_{31} = -43.5707803041896$$
$$x_{32} = 71.8451141864978$$
$$x_{33} = -12.1548537682917$$
$$x_{34} = -34.9690360355552$$
$$x_{35} = 40.4291876505998$$
$$x_{36} = 38.110628689145$$
$$x_{37} = -56.1371509185488$$
$$x_{38} = -93.8362627616263$$
$$x_{39} = -9.83629480683687$$
$$x_{40} = 75.8097405322225$$
$$x_{41} = 697.845085943002$$
$$x_{42} = 31.8274433819654$$
$$x_{43} = 84.4114848008569$$
$$x_{44} = -100.119448068806$$
$$x_{45} = 27.8628170362407$$
$$x_{46} = -91.5177038001715$$
$$x_{47} = -81.2698921472671$$
$$x_{48} = 6.69470215324707$$
$$x_{49} = 59.2787435721386$$
$$x_{50} = -74.9867068400875$$
$$x_{51} = 46.7123729577794$$
$$x_{52} = 9.01326111470189$$
$$x_{53} = 94.6592964537613$$
$$x_{54} = -53.818591957094$$
$$x_{55} = 63.2433699178634$$
$$x_{56} = -78.9513331858123$$
$$x_{57} = -37.28759499701$$
$$x_{58} = -28.6858507283756$$
$$x_{59} = -31.0044096898304$$
$$x_{60} = 21.5796317290611$$
$$x_{61} = 0.411516846067488$$
$$x_{62} = -47.5354066499144$$
$$x_{63} = -5.8716684611121$$
$$x_{64} = 90.6946701080365$$
$$x_{65} = 25.5442580747858$$
$$x_{66} = 15.2964464218815$$
$$x_{1} = 100.942481760941$$
$$x_{2} = 44.3938139963246$$
$$x_{3} = 50.6769993035042$$
$$x_{4} = 96.9778554152161$$
$$x_{5} = 78.1282994936773$$
$$x_{6} = 69.5265552250429$$
$$x_{7} = 34.1460023434202$$
$$x_{8} = -68.703521532908$$
$$x_{9} = -16.1194801140165$$
$$x_{10} = -62.4203362257284$$
$$x_{11} = 88.3761111465817$$
$$x_{12} = -49.8539656113692$$
$$x_{13} = -72.6681478786327$$
$$x_{14} = 82.0929258394021$$
$$x_{15} = -18.4380390754713$$
$$x_{16} = -22.402665421196$$
$$x_{17} = -24.7212243826509$$
$$x_{18} = -85.2345184929919$$
$$x_{19} = -41.2522213427348$$
$$x_{20} = 19.2610727676062$$
$$x_{21} = -3.55310949965728$$
$$x_{22} = -66.3849625714531$$
$$x_{23} = 52.995558264959$$
$$x_{24} = -97.8008891073511$$
$$x_{25} = -87.5530774544467$$
$$x_{26} = 2.73007580752231$$
$$x_{27} = 12.9778874604267$$
$$x_{28} = -60.1017772642736$$
$$x_{29} = 56.9601846106838$$
$$x_{30} = 65.5619288793182$$
$$x_{31} = -43.5707803041896$$
$$x_{32} = 71.8451141864978$$
$$x_{33} = -12.1548537682917$$
$$x_{34} = -34.9690360355552$$
$$x_{35} = 40.4291876505998$$
$$x_{36} = 38.110628689145$$
$$x_{37} = -56.1371509185488$$
$$x_{38} = -93.8362627616263$$
$$x_{39} = -9.83629480683687$$
$$x_{40} = 75.8097405322225$$
$$x_{41} = 697.845085943002$$
$$x_{42} = 31.8274433819654$$
$$x_{43} = 84.4114848008569$$
$$x_{44} = -100.119448068806$$
$$x_{45} = 27.8628170362407$$
$$x_{46} = -91.5177038001715$$
$$x_{47} = -81.2698921472671$$
$$x_{48} = 6.69470215324707$$
$$x_{49} = 59.2787435721386$$
$$x_{50} = -74.9867068400875$$
$$x_{51} = 46.7123729577794$$
$$x_{52} = 9.01326111470189$$
$$x_{53} = 94.6592964537613$$
$$x_{54} = -53.818591957094$$
$$x_{55} = 63.2433699178634$$
$$x_{56} = -78.9513331858123$$
$$x_{57} = -37.28759499701$$
$$x_{58} = -28.6858507283756$$
$$x_{59} = -31.0044096898304$$
$$x_{60} = 21.5796317290611$$
$$x_{61} = 0.411516846067488$$
$$x_{62} = -47.5354066499144$$
$$x_{63} = -5.8716684611121$$
$$x_{64} = 90.6946701080365$$
$$x_{65} = 25.5442580747858$$
$$x_{66} = 15.2964464218815$$
This roots
$$x_{44} = -100.119448068806$$
$$x_{24} = -97.8008891073511$$
$$x_{38} = -93.8362627616263$$
$$x_{46} = -91.5177038001715$$
$$x_{25} = -87.5530774544467$$
$$x_{18} = -85.2345184929919$$
$$x_{47} = -81.2698921472671$$
$$x_{56} = -78.9513331858123$$
$$x_{50} = -74.9867068400875$$
$$x_{13} = -72.6681478786327$$
$$x_{8} = -68.703521532908$$
$$x_{22} = -66.3849625714531$$
$$x_{10} = -62.4203362257284$$
$$x_{28} = -60.1017772642736$$
$$x_{37} = -56.1371509185488$$
$$x_{54} = -53.818591957094$$
$$x_{12} = -49.8539656113692$$
$$x_{62} = -47.5354066499144$$
$$x_{31} = -43.5707803041896$$
$$x_{19} = -41.2522213427348$$
$$x_{57} = -37.28759499701$$
$$x_{34} = -34.9690360355552$$
$$x_{59} = -31.0044096898304$$
$$x_{58} = -28.6858507283756$$
$$x_{17} = -24.7212243826509$$
$$x_{16} = -22.402665421196$$
$$x_{15} = -18.4380390754713$$
$$x_{9} = -16.1194801140165$$
$$x_{33} = -12.1548537682917$$
$$x_{39} = -9.83629480683687$$
$$x_{63} = -5.8716684611121$$
$$x_{21} = -3.55310949965728$$
$$x_{61} = 0.411516846067488$$
$$x_{26} = 2.73007580752231$$
$$x_{48} = 6.69470215324707$$
$$x_{52} = 9.01326111470189$$
$$x_{27} = 12.9778874604267$$
$$x_{66} = 15.2964464218815$$
$$x_{20} = 19.2610727676062$$
$$x_{60} = 21.5796317290611$$
$$x_{65} = 25.5442580747858$$
$$x_{45} = 27.8628170362407$$
$$x_{42} = 31.8274433819654$$
$$x_{7} = 34.1460023434202$$
$$x_{36} = 38.110628689145$$
$$x_{35} = 40.4291876505998$$
$$x_{2} = 44.3938139963246$$
$$x_{51} = 46.7123729577794$$
$$x_{3} = 50.6769993035042$$
$$x_{23} = 52.995558264959$$
$$x_{29} = 56.9601846106838$$
$$x_{49} = 59.2787435721386$$
$$x_{55} = 63.2433699178634$$
$$x_{30} = 65.5619288793182$$
$$x_{6} = 69.5265552250429$$
$$x_{32} = 71.8451141864978$$
$$x_{40} = 75.8097405322225$$
$$x_{5} = 78.1282994936773$$
$$x_{14} = 82.0929258394021$$
$$x_{43} = 84.4114848008569$$
$$x_{11} = 88.3761111465817$$
$$x_{64} = 90.6946701080365$$
$$x_{53} = 94.6592964537613$$
$$x_{4} = 96.9778554152161$$
$$x_{1} = 100.942481760941$$
$$x_{41} = 697.845085943002$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{44}$$
For example, let's take the point
$$x_{0} = x_{44} - \frac{1}{10}$$
=
$$-100.119448068806 + - \frac{1}{10}$$
=
$$-100.219448068806$$
substitute to the expression
$$\sin{\left(t \right)} < \frac{2}{5}$$
$$\sin{\left(t \right)} < \frac{2}{5}$$
sin(t) < 2/5

Then
$$x < -100.119448068806$$
no execute
one of the solutions of our inequality is:
$$x > -100.119448068806 \wedge x < -97.8008891073511$$
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \  
-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
       x44      x24      x38      x46      x25      x18      x47      x56      x50      x13      x8      x22      x10      x28      x37      x54      x12      x62      x31      x19      x57      x34      x59      x58      x17      x16      x15      x9      x33      x39      x63      x21      x61      x26      x48      x52      x27      x66      x20      x60      x65      x45      x42      x7      x36      x35      x2      x51      x3      x23      x29      x49      x55      x30      x6      x32      x40      x5      x14      x43      x11      x64      x53      x4      x1      x41

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x > -100.119448068806 \wedge x < -97.8008891073511$$
$$x > -93.8362627616263 \wedge x < -91.5177038001715$$
$$x > -87.5530774544467 \wedge x < -85.2345184929919$$
$$x > -81.2698921472671 \wedge x < -78.9513331858123$$
$$x > -74.9867068400875 \wedge x < -72.6681478786327$$
$$x > -68.703521532908 \wedge x < -66.3849625714531$$
$$x > -62.4203362257284 \wedge x < -60.1017772642736$$
$$x > -56.1371509185488 \wedge x < -53.818591957094$$
$$x > -49.8539656113692 \wedge x < -47.5354066499144$$
$$x > -43.5707803041896 \wedge x < -41.2522213427348$$
$$x > -37.28759499701 \wedge x < -34.9690360355552$$
$$x > -31.0044096898304 \wedge x < -28.6858507283756$$
$$x > -24.7212243826509 \wedge x < -22.402665421196$$
$$x > -18.4380390754713 \wedge x < -16.1194801140165$$
$$x > -12.1548537682917 \wedge x < -9.83629480683687$$
$$x > -5.8716684611121 \wedge x < -3.55310949965728$$
$$x > 0.411516846067488 \wedge x < 2.73007580752231$$
$$x > 6.69470215324707 \wedge x < 9.01326111470189$$
$$x > 12.9778874604267 \wedge x < 15.2964464218815$$
$$x > 19.2610727676062 \wedge x < 21.5796317290611$$
$$x > 25.5442580747858 \wedge x < 27.8628170362407$$
$$x > 31.8274433819654 \wedge x < 34.1460023434202$$
$$x > 38.110628689145 \wedge x < 40.4291876505998$$
$$x > 44.3938139963246 \wedge x < 46.7123729577794$$
$$x > 50.6769993035042 \wedge x < 52.995558264959$$
$$x > 56.9601846106838 \wedge x < 59.2787435721386$$
$$x > 63.2433699178634 \wedge x < 65.5619288793182$$
$$x > 69.5265552250429 \wedge x < 71.8451141864978$$
$$x > 75.8097405322225 \wedge x < 78.1282994936773$$
$$x > 82.0929258394021 \wedge x < 84.4114848008569$$
$$x > 88.3761111465817 \wedge x < 90.6946701080365$$
$$x > 94.6592964537613 \wedge x < 96.9778554152161$$
$$x > 100.942481760941 \wedge x < 697.845085943002$$
Rapid solution [src]
  /   /                /    ____\\     /                    /    ____\    \\
  |   |                |2*\/ 21 ||     |                    |2*\/ 21 |    ||
Or|And|0 <= t, t < atan|--------||, And|t <= 2*pi, pi - atan|--------| < t||
  \   \                \   21   //     \                    \   21   /    //
$$\left(0 \leq t \wedge t < \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)}\right) \vee \left(t \leq 2 \pi \wedge \pi - \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)} < t\right)$$
((0 <= t)∧(t < atan(2*sqrt(21)/21)))∨((t <= 2*pi)∧(pi - atan(2*sqrt(21)/21) < t))
Rapid solution 2 [src]
        /    ____\              /    ____\       
        |2*\/ 21 |              |2*\/ 21 |       
[0, atan|--------|) U (pi - atan|--------|, 2*pi]
        \   21   /              \   21   /       
$$x\ in\ \left[0, \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)}\right) \cup \left(\pi - \operatorname{atan}{\left(\frac{2 \sqrt{21}}{21} \right)}, 2 \pi\right]$$
x in Union(Interval.Ropen(0, atan(2*sqrt(21)/21)), Interval.Lopen(pi - atan(2*sqrt(21)/21), 2*pi))