Mister Exam

Integral of sint dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  sin(t) dt
 |           
/            
0            
01sin(t)dt\int\limits_{0}^{1} \sin{\left(t \right)}\, dt
Integral(sin(t), (t, 0, 1))
Detail solution
  1. The integral of sine is negative cosine:

    sin(t)dt=cos(t)\int \sin{\left(t \right)}\, dt = - \cos{\left(t \right)}

  2. Add the constant of integration:

    cos(t)+constant- \cos{\left(t \right)}+ \mathrm{constant}


The answer is:

cos(t)+constant- \cos{\left(t \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 | sin(t) dt = C - cos(t)
 |                       
/                        
sin(t)dt=Ccos(t)\int \sin{\left(t \right)}\, dt = C - \cos{\left(t \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
1 - cos(1)
1cos(1)1 - \cos{\left(1 \right)}
=
=
1 - cos(1)
1cos(1)1 - \cos{\left(1 \right)}
1 - cos(1)
Numerical answer [src]
0.45969769413186
0.45969769413186
The graph
Integral of sint dx

    Use the examples entering the upper and lower limits of integration.