Given the inequality:
sin(t)≥21To solve this inequality, we must first solve the corresponding equation:
sin(t)=21Solve:
Given the equation
sin(t)=21transform
sin(t)−21=0sin(t)−21=0Do replacement
w=sin(t)Move free summands (without w)
from left part to right part, we given:
w=21We get the answer: w = 1/2
do backward replacement
sin(t)=wsubstitute w:
k1=38.2227106186758k2=−28.7979326579064k3=−47.6474885794452k4=21.4675497995303k5=34.0339204138894k6=−74.8746249105567k7=−627.79493194236k8=71.733032256967k9=78.0162175641465k10=44.5058959258554k11=40.317105721069k12=−16.2315620435473k13=−60.2138591938044k14=84.2994028713261k15=−56.025068989018k16=0.523598775598299k17=8.90117918517108k18=50.789081233035k19=75.9218224617533k20=−37.1755130674792k21=6.80678408277789k22=−41.3643032722656k23=31.9395253114962k24=63.3554518473942k25=−62.3082542961976k26=−24.60914245312k27=−5.75958653158129k28=−18.3259571459405k29=90.5825881785057k30=−100.007366139275k31=−79.0634151153431k32=−85.3466004225227k33=94.7713783832921k34=−97.9129710368819k35=−9.94837673636768k36=25.6563400043166k37=−81.1578102177363k38=−30.8923277602996k39=−72.7802298081635k40=46.6002910282486k41=−91.6297857297023k42=13.0899693899575k43=52.8834763354282k44=96.8657734856853k45=−2650.98060085419k46=19.3731546971371k47=2.61799387799149k48=−35.081117965086k49=57.0722665402146k50=27.7507351067098k51=138.753675533549k52=101.054563690472k53=−4454.25478401473k54=−12.0427718387609k55=−68.5914396033772k56=−87.4409955249159k57=−22.5147473507269k58=88.4881930761125k59=15.1843644923507k60=−49.7418836818384k61=65.4498469497874k62=82.2050077689329k63=−53.9306738866248k64=59.1666616426078k65=−3.66519142918809k66=17438.4572213013k67=69.6386371545737k68=−93.7241808320955k69=−66.497044500984k70=−43.4586983746588k71=134.564885328763k1=38.2227106186758k2=−28.7979326579064k3=−47.6474885794452k4=21.4675497995303k5=34.0339204138894k6=−74.8746249105567k7=−627.79493194236k8=71.733032256967k9=78.0162175641465k10=44.5058959258554k11=40.317105721069k12=−16.2315620435473k13=−60.2138591938044k14=84.2994028713261k15=−56.025068989018k16=0.523598775598299k17=8.90117918517108k18=50.789081233035k19=75.9218224617533k20=−37.1755130674792k21=6.80678408277789k22=−41.3643032722656k23=31.9395253114962k24=63.3554518473942k25=−62.3082542961976k26=−24.60914245312k27=−5.75958653158129k28=−18.3259571459405k29=90.5825881785057k30=−100.007366139275k31=−79.0634151153431k32=−85.3466004225227k33=94.7713783832921k34=−97.9129710368819k35=−9.94837673636768k36=25.6563400043166k37=−81.1578102177363k38=−30.8923277602996k39=−72.7802298081635k40=46.6002910282486k41=−91.6297857297023k42=13.0899693899575k43=52.8834763354282k44=96.8657734856853k45=−2650.98060085419k46=19.3731546971371k47=2.61799387799149k48=−35.081117965086k49=57.0722665402146k50=27.7507351067098k51=138.753675533549k52=101.054563690472k53=−4454.25478401473k54=−12.0427718387609k55=−68.5914396033772k56=−87.4409955249159k57=−22.5147473507269k58=88.4881930761125k59=15.1843644923507k60=−49.7418836818384k61=65.4498469497874k62=82.2050077689329k63=−53.9306738866248k64=59.1666616426078k65=−3.66519142918809k66=17438.4572213013k67=69.6386371545737k68=−93.7241808320955k69=−66.497044500984k70=−43.4586983746588k71=134.564885328763This roots
k53=−4454.25478401473k45=−2650.98060085419k7=−627.79493194236k30=−100.007366139275k34=−97.9129710368819k68=−93.7241808320955k41=−91.6297857297023k56=−87.4409955249159k32=−85.3466004225227k37=−81.1578102177363k31=−79.0634151153431k6=−74.8746249105567k39=−72.7802298081635k55=−68.5914396033772k69=−66.497044500984k25=−62.3082542961976k13=−60.2138591938044k15=−56.025068989018k63=−53.9306738866248k60=−49.7418836818384k3=−47.6474885794452k70=−43.4586983746588k22=−41.3643032722656k20=−37.1755130674792k48=−35.081117965086k38=−30.8923277602996k2=−28.7979326579064k26=−24.60914245312k57=−22.5147473507269k28=−18.3259571459405k12=−16.2315620435473k54=−12.0427718387609k35=−9.94837673636768k27=−5.75958653158129k65=−3.66519142918809k16=0.523598775598299k47=2.61799387799149k21=6.80678408277789k17=8.90117918517108k42=13.0899693899575k59=15.1843644923507k46=19.3731546971371k4=21.4675497995303k36=25.6563400043166k50=27.7507351067098k23=31.9395253114962k5=34.0339204138894k1=38.2227106186758k11=40.317105721069k10=44.5058959258554k40=46.6002910282486k18=50.789081233035k43=52.8834763354282k49=57.0722665402146k64=59.1666616426078k24=63.3554518473942k61=65.4498469497874k67=69.6386371545737k8=71.733032256967k19=75.9218224617533k9=78.0162175641465k62=82.2050077689329k14=84.2994028713261k58=88.4881930761125k29=90.5825881785057k33=94.7713783832921k44=96.8657734856853k52=101.054563690472k71=134.564885328763k51=138.753675533549k66=17438.4572213013is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
k0≤k53For example, let's take the point
k0=k53−101=
−4454.25478401473+−101=
−4454.35478401473substitute to the expression
sin(t)≥21sin(t)≥21sin(t) >= 1/2
Then
k≤−4454.25478401473no execute
one of the solutions of our inequality is:
k≥−4454.25478401473∧k≤−2650.98060085419 _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____
/ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
k53 k45 k7 k30 k34 k68 k41 k56 k32 k37 k31 k6 k39 k55 k69 k25 k13 k15 k63 k60 k3 k70 k22 k20 k48 k38 k2 k26 k57 k28 k12 k54 k35 k27 k65 k16 k47 k21 k17 k42 k59 k46 k4 k36 k50 k23 k5 k1 k11 k10 k40 k18 k43 k49 k64 k24 k61 k67 k8 k19 k9 k62 k14 k58 k29 k33 k44 k52 k71 k51 k66
Other solutions will get with the changeover to the next point
etc.
The answer:
k≥−4454.25478401473∧k≤−2650.98060085419k≥−627.79493194236∧k≤−100.007366139275k≥−97.9129710368819∧k≤−93.7241808320955k≥−91.6297857297023∧k≤−87.4409955249159k≥−85.3466004225227∧k≤−81.1578102177363k≥−79.0634151153431∧k≤−74.8746249105567k≥−72.7802298081635∧k≤−68.5914396033772k≥−66.497044500984∧k≤−62.3082542961976k≥−60.2138591938044∧k≤−56.025068989018k≥−53.9306738866248∧k≤−49.7418836818384k≥−47.6474885794452∧k≤−43.4586983746588k≥−41.3643032722656∧k≤−37.1755130674792k≥−35.081117965086∧k≤−30.8923277602996k≥−28.7979326579064∧k≤−24.60914245312k≥−22.5147473507269∧k≤−18.3259571459405k≥−16.2315620435473∧k≤−12.0427718387609k≥−9.94837673636768∧k≤−5.75958653158129k≥−3.66519142918809∧k≤0.523598775598299k≥2.61799387799149∧k≤6.80678408277789k≥8.90117918517108∧k≤13.0899693899575k≥15.1843644923507∧k≤19.3731546971371k≥21.4675497995303∧k≤25.6563400043166k≥27.7507351067098∧k≤31.9395253114962k≥34.0339204138894∧k≤38.2227106186758k≥40.317105721069∧k≤44.5058959258554k≥46.6002910282486∧k≤50.789081233035k≥52.8834763354282∧k≤57.0722665402146k≥59.1666616426078∧k≤63.3554518473942k≥65.4498469497874∧k≤69.6386371545737k≥71.733032256967∧k≤75.9218224617533k≥78.0162175641465∧k≤82.2050077689329k≥84.2994028713261∧k≤88.4881930761125k≥90.5825881785057∧k≤94.7713783832921k≥96.8657734856853∧k≤101.054563690472k≥134.564885328763∧k≤138.753675533549k≥17438.4572213013