Mister Exam

Other calculators

sin(t)>=1/2 inequation

A inequation with variable

The solution

You have entered [src]
sin(t) >= 1/2
sin(t)12\sin{\left(t \right)} \geq \frac{1}{2}
sin(t) >= 1/2
Detail solution
Given the inequality:
sin(t)12\sin{\left(t \right)} \geq \frac{1}{2}
To solve this inequality, we must first solve the corresponding equation:
sin(t)=12\sin{\left(t \right)} = \frac{1}{2}
Solve:
Given the equation
sin(t)=12\sin{\left(t \right)} = \frac{1}{2}
transform
sin(t)12=0\sin{\left(t \right)} - \frac{1}{2} = 0
sin(t)12=0\sin{\left(t \right)} - \frac{1}{2} = 0
Do replacement
w=sin(t)w = \sin{\left(t \right)}
Move free summands (without w)
from left part to right part, we given:
w=12w = \frac{1}{2}
We get the answer: w = 1/2
do backward replacement
sin(t)=w\sin{\left(t \right)} = w
substitute w:
k1=38.2227106186758k_{1} = 38.2227106186758
k2=28.7979326579064k_{2} = -28.7979326579064
k3=47.6474885794452k_{3} = -47.6474885794452
k4=21.4675497995303k_{4} = 21.4675497995303
k5=34.0339204138894k_{5} = 34.0339204138894
k6=74.8746249105567k_{6} = -74.8746249105567
k7=627.79493194236k_{7} = -627.79493194236
k8=71.733032256967k_{8} = 71.733032256967
k9=78.0162175641465k_{9} = 78.0162175641465
k10=44.5058959258554k_{10} = 44.5058959258554
k11=40.317105721069k_{11} = 40.317105721069
k12=16.2315620435473k_{12} = -16.2315620435473
k13=60.2138591938044k_{13} = -60.2138591938044
k14=84.2994028713261k_{14} = 84.2994028713261
k15=56.025068989018k_{15} = -56.025068989018
k16=0.523598775598299k_{16} = 0.523598775598299
k17=8.90117918517108k_{17} = 8.90117918517108
k18=50.789081233035k_{18} = 50.789081233035
k19=75.9218224617533k_{19} = 75.9218224617533
k20=37.1755130674792k_{20} = -37.1755130674792
k21=6.80678408277789k_{21} = 6.80678408277789
k22=41.3643032722656k_{22} = -41.3643032722656
k23=31.9395253114962k_{23} = 31.9395253114962
k24=63.3554518473942k_{24} = 63.3554518473942
k25=62.3082542961976k_{25} = -62.3082542961976
k26=24.60914245312k_{26} = -24.60914245312
k27=5.75958653158129k_{27} = -5.75958653158129
k28=18.3259571459405k_{28} = -18.3259571459405
k29=90.5825881785057k_{29} = 90.5825881785057
k30=100.007366139275k_{30} = -100.007366139275
k31=79.0634151153431k_{31} = -79.0634151153431
k32=85.3466004225227k_{32} = -85.3466004225227
k33=94.7713783832921k_{33} = 94.7713783832921
k34=97.9129710368819k_{34} = -97.9129710368819
k35=9.94837673636768k_{35} = -9.94837673636768
k36=25.6563400043166k_{36} = 25.6563400043166
k37=81.1578102177363k_{37} = -81.1578102177363
k38=30.8923277602996k_{38} = -30.8923277602996
k39=72.7802298081635k_{39} = -72.7802298081635
k40=46.6002910282486k_{40} = 46.6002910282486
k41=91.6297857297023k_{41} = -91.6297857297023
k42=13.0899693899575k_{42} = 13.0899693899575
k43=52.8834763354282k_{43} = 52.8834763354282
k44=96.8657734856853k_{44} = 96.8657734856853
k45=2650.98060085419k_{45} = -2650.98060085419
k46=19.3731546971371k_{46} = 19.3731546971371
k47=2.61799387799149k_{47} = 2.61799387799149
k48=35.081117965086k_{48} = -35.081117965086
k49=57.0722665402146k_{49} = 57.0722665402146
k50=27.7507351067098k_{50} = 27.7507351067098
k51=138.753675533549k_{51} = 138.753675533549
k52=101.054563690472k_{52} = 101.054563690472
k53=4454.25478401473k_{53} = -4454.25478401473
k54=12.0427718387609k_{54} = -12.0427718387609
k55=68.5914396033772k_{55} = -68.5914396033772
k56=87.4409955249159k_{56} = -87.4409955249159
k57=22.5147473507269k_{57} = -22.5147473507269
k58=88.4881930761125k_{58} = 88.4881930761125
k59=15.1843644923507k_{59} = 15.1843644923507
k60=49.7418836818384k_{60} = -49.7418836818384
k61=65.4498469497874k_{61} = 65.4498469497874
k62=82.2050077689329k_{62} = 82.2050077689329
k63=53.9306738866248k_{63} = -53.9306738866248
k64=59.1666616426078k_{64} = 59.1666616426078
k65=3.66519142918809k_{65} = -3.66519142918809
k66=17438.4572213013k_{66} = 17438.4572213013
k67=69.6386371545737k_{67} = 69.6386371545737
k68=93.7241808320955k_{68} = -93.7241808320955
k69=66.497044500984k_{69} = -66.497044500984
k70=43.4586983746588k_{70} = -43.4586983746588
k71=134.564885328763k_{71} = 134.564885328763
k1=38.2227106186758k_{1} = 38.2227106186758
k2=28.7979326579064k_{2} = -28.7979326579064
k3=47.6474885794452k_{3} = -47.6474885794452
k4=21.4675497995303k_{4} = 21.4675497995303
k5=34.0339204138894k_{5} = 34.0339204138894
k6=74.8746249105567k_{6} = -74.8746249105567
k7=627.79493194236k_{7} = -627.79493194236
k8=71.733032256967k_{8} = 71.733032256967
k9=78.0162175641465k_{9} = 78.0162175641465
k10=44.5058959258554k_{10} = 44.5058959258554
k11=40.317105721069k_{11} = 40.317105721069
k12=16.2315620435473k_{12} = -16.2315620435473
k13=60.2138591938044k_{13} = -60.2138591938044
k14=84.2994028713261k_{14} = 84.2994028713261
k15=56.025068989018k_{15} = -56.025068989018
k16=0.523598775598299k_{16} = 0.523598775598299
k17=8.90117918517108k_{17} = 8.90117918517108
k18=50.789081233035k_{18} = 50.789081233035
k19=75.9218224617533k_{19} = 75.9218224617533
k20=37.1755130674792k_{20} = -37.1755130674792
k21=6.80678408277789k_{21} = 6.80678408277789
k22=41.3643032722656k_{22} = -41.3643032722656
k23=31.9395253114962k_{23} = 31.9395253114962
k24=63.3554518473942k_{24} = 63.3554518473942
k25=62.3082542961976k_{25} = -62.3082542961976
k26=24.60914245312k_{26} = -24.60914245312
k27=5.75958653158129k_{27} = -5.75958653158129
k28=18.3259571459405k_{28} = -18.3259571459405
k29=90.5825881785057k_{29} = 90.5825881785057
k30=100.007366139275k_{30} = -100.007366139275
k31=79.0634151153431k_{31} = -79.0634151153431
k32=85.3466004225227k_{32} = -85.3466004225227
k33=94.7713783832921k_{33} = 94.7713783832921
k34=97.9129710368819k_{34} = -97.9129710368819
k35=9.94837673636768k_{35} = -9.94837673636768
k36=25.6563400043166k_{36} = 25.6563400043166
k37=81.1578102177363k_{37} = -81.1578102177363
k38=30.8923277602996k_{38} = -30.8923277602996
k39=72.7802298081635k_{39} = -72.7802298081635
k40=46.6002910282486k_{40} = 46.6002910282486
k41=91.6297857297023k_{41} = -91.6297857297023
k42=13.0899693899575k_{42} = 13.0899693899575
k43=52.8834763354282k_{43} = 52.8834763354282
k44=96.8657734856853k_{44} = 96.8657734856853
k45=2650.98060085419k_{45} = -2650.98060085419
k46=19.3731546971371k_{46} = 19.3731546971371
k47=2.61799387799149k_{47} = 2.61799387799149
k48=35.081117965086k_{48} = -35.081117965086
k49=57.0722665402146k_{49} = 57.0722665402146
k50=27.7507351067098k_{50} = 27.7507351067098
k51=138.753675533549k_{51} = 138.753675533549
k52=101.054563690472k_{52} = 101.054563690472
k53=4454.25478401473k_{53} = -4454.25478401473
k54=12.0427718387609k_{54} = -12.0427718387609
k55=68.5914396033772k_{55} = -68.5914396033772
k56=87.4409955249159k_{56} = -87.4409955249159
k57=22.5147473507269k_{57} = -22.5147473507269
k58=88.4881930761125k_{58} = 88.4881930761125
k59=15.1843644923507k_{59} = 15.1843644923507
k60=49.7418836818384k_{60} = -49.7418836818384
k61=65.4498469497874k_{61} = 65.4498469497874
k62=82.2050077689329k_{62} = 82.2050077689329
k63=53.9306738866248k_{63} = -53.9306738866248
k64=59.1666616426078k_{64} = 59.1666616426078
k65=3.66519142918809k_{65} = -3.66519142918809
k66=17438.4572213013k_{66} = 17438.4572213013
k67=69.6386371545737k_{67} = 69.6386371545737
k68=93.7241808320955k_{68} = -93.7241808320955
k69=66.497044500984k_{69} = -66.497044500984
k70=43.4586983746588k_{70} = -43.4586983746588
k71=134.564885328763k_{71} = 134.564885328763
This roots
k53=4454.25478401473k_{53} = -4454.25478401473
k45=2650.98060085419k_{45} = -2650.98060085419
k7=627.79493194236k_{7} = -627.79493194236
k30=100.007366139275k_{30} = -100.007366139275
k34=97.9129710368819k_{34} = -97.9129710368819
k68=93.7241808320955k_{68} = -93.7241808320955
k41=91.6297857297023k_{41} = -91.6297857297023
k56=87.4409955249159k_{56} = -87.4409955249159
k32=85.3466004225227k_{32} = -85.3466004225227
k37=81.1578102177363k_{37} = -81.1578102177363
k31=79.0634151153431k_{31} = -79.0634151153431
k6=74.8746249105567k_{6} = -74.8746249105567
k39=72.7802298081635k_{39} = -72.7802298081635
k55=68.5914396033772k_{55} = -68.5914396033772
k69=66.497044500984k_{69} = -66.497044500984
k25=62.3082542961976k_{25} = -62.3082542961976
k13=60.2138591938044k_{13} = -60.2138591938044
k15=56.025068989018k_{15} = -56.025068989018
k63=53.9306738866248k_{63} = -53.9306738866248
k60=49.7418836818384k_{60} = -49.7418836818384
k3=47.6474885794452k_{3} = -47.6474885794452
k70=43.4586983746588k_{70} = -43.4586983746588
k22=41.3643032722656k_{22} = -41.3643032722656
k20=37.1755130674792k_{20} = -37.1755130674792
k48=35.081117965086k_{48} = -35.081117965086
k38=30.8923277602996k_{38} = -30.8923277602996
k2=28.7979326579064k_{2} = -28.7979326579064
k26=24.60914245312k_{26} = -24.60914245312
k57=22.5147473507269k_{57} = -22.5147473507269
k28=18.3259571459405k_{28} = -18.3259571459405
k12=16.2315620435473k_{12} = -16.2315620435473
k54=12.0427718387609k_{54} = -12.0427718387609
k35=9.94837673636768k_{35} = -9.94837673636768
k27=5.75958653158129k_{27} = -5.75958653158129
k65=3.66519142918809k_{65} = -3.66519142918809
k16=0.523598775598299k_{16} = 0.523598775598299
k47=2.61799387799149k_{47} = 2.61799387799149
k21=6.80678408277789k_{21} = 6.80678408277789
k17=8.90117918517108k_{17} = 8.90117918517108
k42=13.0899693899575k_{42} = 13.0899693899575
k59=15.1843644923507k_{59} = 15.1843644923507
k46=19.3731546971371k_{46} = 19.3731546971371
k4=21.4675497995303k_{4} = 21.4675497995303
k36=25.6563400043166k_{36} = 25.6563400043166
k50=27.7507351067098k_{50} = 27.7507351067098
k23=31.9395253114962k_{23} = 31.9395253114962
k5=34.0339204138894k_{5} = 34.0339204138894
k1=38.2227106186758k_{1} = 38.2227106186758
k11=40.317105721069k_{11} = 40.317105721069
k10=44.5058959258554k_{10} = 44.5058959258554
k40=46.6002910282486k_{40} = 46.6002910282486
k18=50.789081233035k_{18} = 50.789081233035
k43=52.8834763354282k_{43} = 52.8834763354282
k49=57.0722665402146k_{49} = 57.0722665402146
k64=59.1666616426078k_{64} = 59.1666616426078
k24=63.3554518473942k_{24} = 63.3554518473942
k61=65.4498469497874k_{61} = 65.4498469497874
k67=69.6386371545737k_{67} = 69.6386371545737
k8=71.733032256967k_{8} = 71.733032256967
k19=75.9218224617533k_{19} = 75.9218224617533
k9=78.0162175641465k_{9} = 78.0162175641465
k62=82.2050077689329k_{62} = 82.2050077689329
k14=84.2994028713261k_{14} = 84.2994028713261
k58=88.4881930761125k_{58} = 88.4881930761125
k29=90.5825881785057k_{29} = 90.5825881785057
k33=94.7713783832921k_{33} = 94.7713783832921
k44=96.8657734856853k_{44} = 96.8657734856853
k52=101.054563690472k_{52} = 101.054563690472
k71=134.564885328763k_{71} = 134.564885328763
k51=138.753675533549k_{51} = 138.753675533549
k66=17438.4572213013k_{66} = 17438.4572213013
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
k0k53k_{0} \leq k_{53}
For example, let's take the point
k0=k53110k_{0} = k_{53} - \frac{1}{10}
=
4454.25478401473+110-4454.25478401473 + - \frac{1}{10}
=
4454.35478401473-4454.35478401473
substitute to the expression
sin(t)12\sin{\left(t \right)} \geq \frac{1}{2}
sin(t)12\sin{\left(t \right)} \geq \frac{1}{2}
sin(t) >= 1/2

Then
k4454.25478401473k \leq -4454.25478401473
no execute
one of the solutions of our inequality is:
k4454.25478401473k2650.98060085419k \geq -4454.25478401473 \wedge k \leq -2650.98060085419
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
       k53      k45      k7      k30      k34      k68      k41      k56      k32      k37      k31      k6      k39      k55      k69      k25      k13      k15      k63      k60      k3      k70      k22      k20      k48      k38      k2      k26      k57      k28      k12      k54      k35      k27      k65      k16      k47      k21      k17      k42      k59      k46      k4      k36      k50      k23      k5      k1      k11      k10      k40      k18      k43      k49      k64      k24      k61      k67      k8      k19      k9      k62      k14      k58      k29      k33      k44      k52      k71      k51      k66

Other solutions will get with the changeover to the next point
etc.
The answer:
k4454.25478401473k2650.98060085419k \geq -4454.25478401473 \wedge k \leq -2650.98060085419
k627.79493194236k100.007366139275k \geq -627.79493194236 \wedge k \leq -100.007366139275
k97.9129710368819k93.7241808320955k \geq -97.9129710368819 \wedge k \leq -93.7241808320955
k91.6297857297023k87.4409955249159k \geq -91.6297857297023 \wedge k \leq -87.4409955249159
k85.3466004225227k81.1578102177363k \geq -85.3466004225227 \wedge k \leq -81.1578102177363
k79.0634151153431k74.8746249105567k \geq -79.0634151153431 \wedge k \leq -74.8746249105567
k72.7802298081635k68.5914396033772k \geq -72.7802298081635 \wedge k \leq -68.5914396033772
k66.497044500984k62.3082542961976k \geq -66.497044500984 \wedge k \leq -62.3082542961976
k60.2138591938044k56.025068989018k \geq -60.2138591938044 \wedge k \leq -56.025068989018
k53.9306738866248k49.7418836818384k \geq -53.9306738866248 \wedge k \leq -49.7418836818384
k47.6474885794452k43.4586983746588k \geq -47.6474885794452 \wedge k \leq -43.4586983746588
k41.3643032722656k37.1755130674792k \geq -41.3643032722656 \wedge k \leq -37.1755130674792
k35.081117965086k30.8923277602996k \geq -35.081117965086 \wedge k \leq -30.8923277602996
k28.7979326579064k24.60914245312k \geq -28.7979326579064 \wedge k \leq -24.60914245312
k22.5147473507269k18.3259571459405k \geq -22.5147473507269 \wedge k \leq -18.3259571459405
k16.2315620435473k12.0427718387609k \geq -16.2315620435473 \wedge k \leq -12.0427718387609
k9.94837673636768k5.75958653158129k \geq -9.94837673636768 \wedge k \leq -5.75958653158129
k3.66519142918809k0.523598775598299k \geq -3.66519142918809 \wedge k \leq 0.523598775598299
k2.61799387799149k6.80678408277789k \geq 2.61799387799149 \wedge k \leq 6.80678408277789
k8.90117918517108k13.0899693899575k \geq 8.90117918517108 \wedge k \leq 13.0899693899575
k15.1843644923507k19.3731546971371k \geq 15.1843644923507 \wedge k \leq 19.3731546971371
k21.4675497995303k25.6563400043166k \geq 21.4675497995303 \wedge k \leq 25.6563400043166
k27.7507351067098k31.9395253114962k \geq 27.7507351067098 \wedge k \leq 31.9395253114962
k34.0339204138894k38.2227106186758k \geq 34.0339204138894 \wedge k \leq 38.2227106186758
k40.317105721069k44.5058959258554k \geq 40.317105721069 \wedge k \leq 44.5058959258554
k46.6002910282486k50.789081233035k \geq 46.6002910282486 \wedge k \leq 50.789081233035
k52.8834763354282k57.0722665402146k \geq 52.8834763354282 \wedge k \leq 57.0722665402146
k59.1666616426078k63.3554518473942k \geq 59.1666616426078 \wedge k \leq 63.3554518473942
k65.4498469497874k69.6386371545737k \geq 65.4498469497874 \wedge k \leq 69.6386371545737
k71.733032256967k75.9218224617533k \geq 71.733032256967 \wedge k \leq 75.9218224617533
k78.0162175641465k82.2050077689329k \geq 78.0162175641465 \wedge k \leq 82.2050077689329
k84.2994028713261k88.4881930761125k \geq 84.2994028713261 \wedge k \leq 88.4881930761125
k90.5825881785057k94.7713783832921k \geq 90.5825881785057 \wedge k \leq 94.7713783832921
k96.8657734856853k101.054563690472k \geq 96.8657734856853 \wedge k \leq 101.054563690472
k134.564885328763k138.753675533549k \geq 134.564885328763 \wedge k \leq 138.753675533549
k17438.4572213013k \geq 17438.4572213013
Rapid solution 2 [src]
 pi  5*pi 
[--, ----]
 6    6   
k in [π6,5π6]k\ in\ \left[\frac{\pi}{6}, \frac{5 \pi}{6}\right]
k in Interval(pi/6, 5*pi/6)
Rapid solution [src]
   /pi            5*pi\
And|-- <= t, t <= ----|
   \6              6  /
π6tt5π6\frac{\pi}{6} \leq t \wedge t \leq \frac{5 \pi}{6}
(pi/6 <= t)∧(t <= 5*pi/6)