Mister Exam

Other calculators


cos(x)>(sqrt(3))/2

cos(x)>(sqrt(3))/2 inequation

A inequation with variable

The solution

You have entered [src]
           ___
         \/ 3 
cos(x) > -----
           2  
$$\cos{\left(x \right)} > \frac{\sqrt{3}}{2}$$
cos(x) > sqrt(3)/2
Detail solution
Given the inequality:
$$\cos{\left(x \right)} > \frac{\sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{\sqrt{3}}{2}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{\sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
$$x = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
Or
$$x = 2 \pi n + \frac{\pi}{6}$$
$$x = 2 \pi n - \frac{5 \pi}{6}$$
, where n - is a integer
$$x_{1} = 2 \pi n + \frac{\pi}{6}$$
$$x_{2} = 2 \pi n - \frac{5 \pi}{6}$$
$$x_{1} = 2 \pi n + \frac{\pi}{6}$$
$$x_{2} = 2 \pi n - \frac{5 \pi}{6}$$
This roots
$$x_{1} = 2 \pi n + \frac{\pi}{6}$$
$$x_{2} = 2 \pi n - \frac{5 \pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + \frac{\pi}{6}\right) - \frac{1}{10}$$
=
$$2 \pi n - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\cos{\left(x \right)} > \frac{\sqrt{3}}{2}$$
$$\cos{\left(2 \pi n - \frac{1}{10} + \frac{\pi}{6} \right)} > \frac{\sqrt{3}}{2}$$
                 ___
   /1    pi\   \/ 3 
sin|-- + --| > -----
   \10   3 /     2  
               

one of the solutions of our inequality is:
$$x < 2 \pi n + \frac{\pi}{6}$$
 _____           _____          
      \         /
-------ο-------ο-------
       x_1      x_2

Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < 2 \pi n + \frac{\pi}{6}$$
$$x > 2 \pi n - \frac{5 \pi}{6}$$
Solving inequality on a graph
Rapid solution [src]
  /   /            pi\     /11*pi              \\
Or|And|0 <= x, x < --|, And|----- < x, x < 2*pi||
  \   \            6 /     \  6                //
$$\left(0 \leq x \wedge x < \frac{\pi}{6}\right) \vee \left(\frac{11 \pi}{6} < x \wedge x < 2 \pi\right)$$
((0 <= x)∧(x < pi/6))∨((11*pi/6 < x)∧(x < 2*pi))
Rapid solution 2 [src]
    pi     11*pi       
[0, --) U (-----, 2*pi)
    6        6         
$$x\ in\ \left[0, \frac{\pi}{6}\right) \cup \left(\frac{11 \pi}{6}, 2 \pi\right)$$
x in Union(Interval.Ropen(0, pi/6), Interval.open(11*pi/6, 2*pi))
The graph
cos(x)>(sqrt(3))/2 inequation