Given the inequality:
$$\cos{\left(x \right)} > \frac{\sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{\sqrt{3}}{2}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{\sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
$$x = 2 \pi n - \pi + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
Or
$$x = 2 \pi n + \frac{\pi}{6}$$
$$x = 2 \pi n - \frac{5 \pi}{6}$$
, where n - is a integer
$$x_{1} = 2 \pi n + \frac{\pi}{6}$$
$$x_{2} = 2 \pi n - \frac{5 \pi}{6}$$
$$x_{1} = 2 \pi n + \frac{\pi}{6}$$
$$x_{2} = 2 \pi n - \frac{5 \pi}{6}$$
This roots
$$x_{1} = 2 \pi n + \frac{\pi}{6}$$
$$x_{2} = 2 \pi n - \frac{5 \pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(2 \pi n + \frac{\pi}{6}\right) - \frac{1}{10}$$
=
$$2 \pi n - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\cos{\left(x \right)} > \frac{\sqrt{3}}{2}$$
$$\cos{\left(2 \pi n - \frac{1}{10} + \frac{\pi}{6} \right)} > \frac{\sqrt{3}}{2}$$
___
/1 pi\ \/ 3
sin|-- + --| > -----
\10 3 / 2
one of the solutions of our inequality is:
$$x < 2 \pi n + \frac{\pi}{6}$$
_____ _____
\ /
-------ο-------ο-------
x_1 x_2Other solutions will get with the changeover to the next point
etc.
The answer:
$$x < 2 \pi n + \frac{\pi}{6}$$
$$x > 2 \pi n - \frac{5 \pi}{6}$$