Mister Exam

Other calculators


cos(x)>=sqrt(3)/2

cos(x)>=sqrt(3)/2 inequation

A inequation with variable

The solution

You have entered [src]
            ___
          \/ 3 
cos(x) >= -----
            2  
$$\cos{\left(x \right)} \geq \frac{\sqrt{3}}{2}$$
cos(x) >= sqrt(3)/2
Detail solution
Given the inequality:
$$\cos{\left(x \right)} \geq \frac{\sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(x \right)} = \frac{\sqrt{3}}{2}$$
Solve:
Given the equation
$$\cos{\left(x \right)} = \frac{\sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
$$x = \pi n - \pi + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
Or
$$x = \pi n + \frac{\pi}{6}$$
$$x = \pi n - \frac{5 \pi}{6}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{6}$$
$$x_{2} = \pi n - \frac{5 \pi}{6}$$
$$x_{1} = \pi n + \frac{\pi}{6}$$
$$x_{2} = \pi n - \frac{5 \pi}{6}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{6}$$
$$x_{2} = \pi n - \frac{5 \pi}{6}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{6}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{6}$$
substitute to the expression
$$\cos{\left(x \right)} \geq \frac{\sqrt{3}}{2}$$
$$\cos{\left(\pi n - \frac{1}{10} + \frac{\pi}{6} \right)} \geq \frac{\sqrt{3}}{2}$$
                        ___
    n    /1    pi\    \/ 3 
(-1) *sin|-- + --| >= -----
         \10   3 /      2  
                      

but
                       ___
    n    /1    pi\   \/ 3 
(-1) *sin|-- + --| < -----
         \10   3 /     2  
                     

Then
$$x \leq \pi n + \frac{\pi}{6}$$
no execute
one of the solutions of our inequality is:
$$x \geq \pi n + \frac{\pi}{6} \wedge x \leq \pi n - \frac{5 \pi}{6}$$
         _____  
        /     \  
-------•-------•-------
       x_1      x_2
Solving inequality on a graph
Rapid solution [src]
  /   /             pi\     /11*pi               \\
Or|And|0 <= x, x <= --|, And|----- <= x, x < 2*pi||
  \   \             6 /     \  6                 //
$$\left(0 \leq x \wedge x \leq \frac{\pi}{6}\right) \vee \left(\frac{11 \pi}{6} \leq x \wedge x < 2 \pi\right)$$
((0 <= x)∧(x <= pi/6))∨((11*pi/6 <= x)∧(x < 2*pi))
Rapid solution 2 [src]
    pi     11*pi       
[0, --] U [-----, 2*pi)
    6        6         
$$x\ in\ \left[0, \frac{\pi}{6}\right] \cup \left[\frac{11 \pi}{6}, 2 \pi\right)$$
x in Union(Interval(0, pi/6), Interval.Ropen(11*pi/6, 2*pi))
The graph
cos(x)>=sqrt(3)/2 inequation