Mister Exam

Other calculators


ctgx>=sqrt(3)/3

ctgx>=sqrt(3)/3 inequation

A inequation with variable

The solution

You have entered [src]
            ___
          \/ 3 
cot(x) >= -----
            3  
$$\cot{\left(x \right)} \geq \frac{\sqrt{3}}{3}$$
cot(x) >= sqrt(3)/3
Detail solution
Given the inequality:
$$\cot{\left(x \right)} \geq \frac{\sqrt{3}}{3}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cot{\left(x \right)} = \frac{\sqrt{3}}{3}$$
Solve:
Given the equation
$$\cot{\left(x \right)} = \frac{\sqrt{3}}{3}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = \pi n + \operatorname{acot}{\left(\frac{\sqrt{3}}{3} \right)}$$
Or
$$x = \pi n + \frac{\pi}{3}$$
, where n - is a integer
$$x_{1} = \pi n + \frac{\pi}{3}$$
$$x_{1} = \pi n + \frac{\pi}{3}$$
This roots
$$x_{1} = \pi n + \frac{\pi}{3}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} \leq x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\pi n + \frac{\pi}{3}\right) - \frac{1}{10}$$
=
$$\pi n - \frac{1}{10} + \frac{\pi}{3}$$
substitute to the expression
$$\cot{\left(x \right)} \geq \frac{\sqrt{3}}{3}$$
$$\cot{\left(\pi n - \frac{1}{10} + \frac{\pi}{3} \right)} \geq \frac{\sqrt{3}}{3}$$
                  ___
   /1    pi\    \/ 3 
tan|-- + --| >= -----
   \10   6 /      3  
                

the solution of our inequality is:
$$x \leq \pi n + \frac{\pi}{3}$$
 _____          
      \    
-------•-------
       x_1
Solving inequality on a graph
Rapid solution 2 [src]
    pi 
(0, --]
    3  
$$x\ in\ \left(0, \frac{\pi}{3}\right]$$
x in Interval.Lopen(0, pi/3)
Rapid solution [src]
   /     pi       \
And|x <= --, 0 < x|
   \     3        /
$$x \leq \frac{\pi}{3} \wedge 0 < x$$
(0 < x)∧(x <= pi/3)
The graph
ctgx>=sqrt(3)/3 inequation