Mister Exam

Other calculators


cos(2x)>sqrt(3)/2

cos(2x)>sqrt(3)/2 inequation

A inequation with variable

The solution

You have entered [src]
             ___
           \/ 3 
cos(2*x) > -----
             2  
$$\cos{\left(2 x \right)} > \frac{\sqrt{3}}{2}$$
cos(2*x) > sqrt(3)/2
Detail solution
Given the inequality:
$$\cos{\left(2 x \right)} > \frac{\sqrt{3}}{2}$$
To solve this inequality, we must first solve the corresponding equation:
$$\cos{\left(2 x \right)} = \frac{\sqrt{3}}{2}$$
Solve:
Given the equation
$$\cos{\left(2 x \right)} = \frac{\sqrt{3}}{2}$$
- this is the simplest trigonometric equation
This equation is transformed to
$$2 x = \pi n + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
$$2 x = \pi n - \pi + \operatorname{acos}{\left(\frac{\sqrt{3}}{2} \right)}$$
Or
$$2 x = \pi n + \frac{\pi}{6}$$
$$2 x = \pi n - \frac{5 \pi}{6}$$
, where n - is a integer
Divide both parts of the equation by
$$2$$
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{12}$$
$$x_{2} = \frac{\pi n}{2} - \frac{5 \pi}{12}$$
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{12}$$
$$x_{2} = \frac{\pi n}{2} - \frac{5 \pi}{12}$$
This roots
$$x_{1} = \frac{\pi n}{2} + \frac{\pi}{12}$$
$$x_{2} = \frac{\pi n}{2} - \frac{5 \pi}{12}$$
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
$$x_{0} < x_{1}$$
For example, let's take the point
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\left(\frac{\pi n}{2} + \frac{\pi}{12}\right) - \frac{1}{10}$$
=
$$\frac{\pi n}{2} - \frac{1}{10} + \frac{\pi}{12}$$
substitute to the expression
$$\cos{\left(2 x \right)} > \frac{\sqrt{3}}{2}$$
$$\cos{\left(2 \left(\frac{\pi n}{2} - \frac{1}{10} + \frac{\pi}{12}\right) \right)} > \frac{\sqrt{3}}{2}$$
                      ___
    n    /1   pi\   \/ 3 
(-1) *sin|- + --| > -----
         \5   3 /     2  
                    

Then
$$x < \frac{\pi n}{2} + \frac{\pi}{12}$$
no execute
one of the solutions of our inequality is:
$$x > \frac{\pi n}{2} + \frac{\pi}{12} \wedge x < \frac{\pi n}{2} - \frac{5 \pi}{12}$$
         _____  
        /     \  
-------ο-------ο-------
       x_1      x_2
Solving inequality on a graph
Rapid solution [src]
  /   /            pi\     /11*pi            \\
Or|And|0 <= x, x < --|, And|----- < x, x < pi||
  \   \            12/     \  12             //
$$\left(0 \leq x \wedge x < \frac{\pi}{12}\right) \vee \left(\frac{11 \pi}{12} < x \wedge x < \pi\right)$$
((0 <= x)∧(x < pi/12))∨((x < pi)∧(11*pi/12 < x))
Rapid solution 2 [src]
    pi     11*pi     
[0, --) U (-----, pi)
    12       12      
$$x\ in\ \left[0, \frac{\pi}{12}\right) \cup \left(\frac{11 \pi}{12}, \pi\right)$$
x in Union(Interval.Ropen(0, pi/12), Interval.open(11*pi/12, pi))
The graph
cos(2x)>sqrt(3)/2 inequation