Mister Exam

Other calculators

cos(t)<1/2 inequation

A inequation with variable

The solution

You have entered [src]
cos(t) < 1/2
cos(t)<12\cos{\left(t \right)} < \frac{1}{2}
cos(t) < 1/2
Detail solution
Given the inequality:
cos(t)<12\cos{\left(t \right)} < \frac{1}{2}
To solve this inequality, we must first solve the corresponding equation:
cos(t)=12\cos{\left(t \right)} = \frac{1}{2}
Solve:
Given the equation
cos(t)=12\cos{\left(t \right)} = \frac{1}{2}
- this is the simplest trigonometric equation
This equation is transformed to
t=πn+acos(12)t = \pi n + \operatorname{acos}{\left(\frac{1}{2} \right)}
t=πnπ+acos(12)t = \pi n - \pi + \operatorname{acos}{\left(\frac{1}{2} \right)}
Or
t=πn+π3t = \pi n + \frac{\pi}{3}
t=πn2π3t = \pi n - \frac{2 \pi}{3}
, where n - is a integer
t1=πn+π3t_{1} = \pi n + \frac{\pi}{3}
t2=πn2π3t_{2} = \pi n - \frac{2 \pi}{3}
t1=πn+π3t_{1} = \pi n + \frac{\pi}{3}
t2=πn2π3t_{2} = \pi n - \frac{2 \pi}{3}
This roots
t1=πn+π3t_{1} = \pi n + \frac{\pi}{3}
t2=πn2π3t_{2} = \pi n - \frac{2 \pi}{3}
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
t0<t1t_{0} < t_{1}
For example, let's take the point
t0=t1110t_{0} = t_{1} - \frac{1}{10}
=
(πn+π3)+110\left(\pi n + \frac{\pi}{3}\right) + - \frac{1}{10}
=
πn110+π3\pi n - \frac{1}{10} + \frac{\pi}{3}
substitute to the expression
cos(t)<12\cos{\left(t \right)} < \frac{1}{2}
cos(πn110+π3)<12\cos{\left(\pi n - \frac{1}{10} + \frac{\pi}{3} \right)} < \frac{1}{2}
   /  1    pi       \      
cos|- -- + -- + pi*n| < 1/2
   \  10   3        /      

one of the solutions of our inequality is:
t<πn+π3t < \pi n + \frac{\pi}{3}
 _____           _____          
      \         /
-------ο-------ο-------
       t1      t2

Other solutions will get with the changeover to the next point
etc.
The answer:
t<πn+π3t < \pi n + \frac{\pi}{3}
t>πn2π3t > \pi n - \frac{2 \pi}{3}
Solving inequality on a graph
05-20-15-10-51015202-2
Rapid solution [src]
   /pi          5*pi\
And|-- < t, t < ----|
   \3            3  /
π3<tt<5π3\frac{\pi}{3} < t \wedge t < \frac{5 \pi}{3}
(pi/3 < t)∧(t < 5*pi/3)
Rapid solution 2 [src]
 pi  5*pi 
(--, ----)
 3    3   
t in (π3,5π3)t\ in\ \left(\frac{\pi}{3}, \frac{5 \pi}{3}\right)
t in Interval.open(pi/3, 5*pi/3)