Mister Exam

Other calculators

cost<=1 inequation

A inequation with variable

The solution

You have entered [src]
cos(t) <= 1
cos(t)1\cos{\left(t \right)} \leq 1
cos(t) <= 1
Detail solution
Given the inequality:
cos(t)1\cos{\left(t \right)} \leq 1
To solve this inequality, we must first solve the corresponding equation:
cos(t)=1\cos{\left(t \right)} = 1
Solve:
Given the equation
cos(t)=1\cos{\left(t \right)} = 1
transform
cos(t)1=0\cos{\left(t \right)} - 1 = 0
cos(t)1=0\cos{\left(t \right)} - 1 = 0
Do replacement
w=cos(t)w = \cos{\left(t \right)}
Move free summands (without w)
from left part to right part, we given:
w=1w = 1
We get the answer: w = 1
do backward replacement
cos(t)=w\cos{\left(t \right)} = w
substitute w:
x1=62.8318535568358x_{1} = 62.8318535568358
x2=37.6991115173992x_{2} = 37.6991115173992
x3=31.4159260507536x_{3} = -31.4159260507536
x4=37.6991113479743x_{4} = -37.6991113479743
x5=50.2654829667315x_{5} = -50.2654829667315
x6=18.8495563230046x_{6} = -18.8495563230046
x7=94.2477800892631x_{7} = 94.2477800892631
x8=100.530965157364x_{8} = 100.530965157364
x9=31.4159268459961x_{9} = 31.4159268459961
x10=94.2477801171671x_{10} = -94.2477801171671
x11=12.5663710110881x_{11} = 12.5663710110881
x12=43.9822976246252x_{12} = -43.9822976246252
x13=94.2477797298079x_{13} = -94.2477797298079
x14=87.964593928489x_{14} = -87.964593928489
x15=62.8318534787248x_{15} = -62.8318534787248
x16=81.6814084860076x_{16} = 81.6814084860076
x17=6.28318579821791x_{17} = 6.28318579821791
x18=100.530964759815x_{18} = 100.530964759815
x19=75.3982238741744x_{19} = -75.3982238741744
x20=56.5486668532011x_{20} = 56.5486668532011
x21=87.964594335905x_{21} = 87.964594335905
x22=56.5486682426592x_{22} = -56.5486682426592
x23=12.5663710889626x_{23} = -12.5663710889626
x24=43.9822971745392x_{24} = -43.9822971745392
x25=81.6814085860518x_{25} = 81.6814085860518
x26=56.5486674685864x_{26} = -56.5486674685864
x27=69.1150379045123x_{27} = -69.1150379045123
x28=62.831852673202x_{28} = -62.831852673202
x29=25.1327407505866x_{29} = -25.1327407505866
x30=56.5486682809363x_{30} = 56.5486682809363
x31=50.2654824463392x_{31} = 50.2654824463392
x32=31.4159267157965x_{32} = -31.4159267157965
x33=56.5486680806249x_{33} = 56.5486680806249
x34=6.28318626747926x_{34} = 6.28318626747926
x35=37.6991120311338x_{35} = 37.6991120311338
x36=18.8495552124105x_{36} = -18.8495552124105
x37=69.115038794053x_{37} = 69.115038794053
x38=87.9645947692094x_{38} = -87.9645947692094
x39=0x_{39} = 0
x40=87.9645946044253x_{40} = 87.9645946044253
x41=50.265482641087x_{41} = -50.265482641087
x42=25.1327416384075x_{42} = 25.1327416384075
x43=12.5663703112531x_{43} = -12.5663703112531
x44=6.2831858160515x_{44} = -6.2831858160515
x45=75.3982231720141x_{45} = -75.3982231720141
x46=69.1150386869085x_{46} = -69.1150386869085
x47=25.1327415297174x_{47} = -25.1327415297174
x48=37.6991113348642x_{48} = 37.6991113348642
x49=69.1150379887504x_{49} = 69.1150379887504
x50=12.5663704426592x_{50} = 12.5663704426592
x51=6.2831851275477x_{51} = -6.2831851275477
x52=87.9645938121814x_{52} = 87.9645938121814
x53=37.6991121287155x_{53} = -37.6991121287155
x54=81.6814075578313x_{54} = -81.6814075578313
x55=3.40772025642919107x_{55} = 3.40772025642919 \cdot 10^{-7}
x56=100.530964626003x_{56} = -100.530964626003
x57=81.6814092565354x_{57} = -81.6814092565354
x58=18.8495555173448x_{58} = -18.8495555173448
x59=37.6991118772631x_{59} = -37.6991118772631
x60=75.3982232188727x_{60} = 75.3982232188727
x61=43.9822967932182x_{61} = -43.9822967932182
x62=31.4159260208155x_{62} = -31.4159260208155
x63=94.2477794452815x_{63} = -94.2477794452815
x64=6.28318528420851x_{64} = 6.28318528420851
x65=94.2477792651059x_{65} = 94.2477792651059
x66=81.6814090382277x_{66} = -81.6814090382277
x67=94.2477796093523x_{67} = 94.2477796093523
x68=6.28318555849548x_{68} = -6.28318555849548
x69=50.2654821322586x_{69} = 50.2654821322586
x70=25.1327408328211x_{70} = 25.1327408328211
x71=50.2654822863493x_{71} = -50.2654822863493
x72=62.8318527849002x_{72} = 62.8318527849002
x73=43.9822974733639x_{73} = 43.9822974733639
x74=81.6814091897036x_{74} = 81.6814091897036
x75=6.28318500093652x_{75} = 6.28318500093652
x76=81.6814084945807x_{76} = -81.6814084945807
x77=12.5663711301703x_{77} = 12.5663711301703
x78=43.9822971694647x_{78} = 43.9822971694647
x79=75.3982240031607x_{79} = 75.3982240031607
x80=75.3982231045728x_{80} = -75.3982231045728
x81=43.9822966661001x_{81} = 43.9822966661001
x82=31.4159260648825x_{82} = 31.4159260648825
x83=18.8495556275525x_{83} = 18.8495556275525
x84=18.8495564031971x_{84} = 18.8495564031971
x85=50.2654829439723x_{85} = 50.2654829439723
x86=56.5486676011951x_{86} = 56.5486676011951
x87=4.79511606158654107x_{87} = -4.79511606158654 \cdot 10^{-7}
x88=87.9645943586158x_{88} = -87.9645943586158
x1=62.8318535568358x_{1} = 62.8318535568358
x2=37.6991115173992x_{2} = 37.6991115173992
x3=31.4159260507536x_{3} = -31.4159260507536
x4=37.6991113479743x_{4} = -37.6991113479743
x5=50.2654829667315x_{5} = -50.2654829667315
x6=18.8495563230046x_{6} = -18.8495563230046
x7=94.2477800892631x_{7} = 94.2477800892631
x8=100.530965157364x_{8} = 100.530965157364
x9=31.4159268459961x_{9} = 31.4159268459961
x10=94.2477801171671x_{10} = -94.2477801171671
x11=12.5663710110881x_{11} = 12.5663710110881
x12=43.9822976246252x_{12} = -43.9822976246252
x13=94.2477797298079x_{13} = -94.2477797298079
x14=87.964593928489x_{14} = -87.964593928489
x15=62.8318534787248x_{15} = -62.8318534787248
x16=81.6814084860076x_{16} = 81.6814084860076
x17=6.28318579821791x_{17} = 6.28318579821791
x18=100.530964759815x_{18} = 100.530964759815
x19=75.3982238741744x_{19} = -75.3982238741744
x20=56.5486668532011x_{20} = 56.5486668532011
x21=87.964594335905x_{21} = 87.964594335905
x22=56.5486682426592x_{22} = -56.5486682426592
x23=12.5663710889626x_{23} = -12.5663710889626
x24=43.9822971745392x_{24} = -43.9822971745392
x25=81.6814085860518x_{25} = 81.6814085860518
x26=56.5486674685864x_{26} = -56.5486674685864
x27=69.1150379045123x_{27} = -69.1150379045123
x28=62.831852673202x_{28} = -62.831852673202
x29=25.1327407505866x_{29} = -25.1327407505866
x30=56.5486682809363x_{30} = 56.5486682809363
x31=50.2654824463392x_{31} = 50.2654824463392
x32=31.4159267157965x_{32} = -31.4159267157965
x33=56.5486680806249x_{33} = 56.5486680806249
x34=6.28318626747926x_{34} = 6.28318626747926
x35=37.6991120311338x_{35} = 37.6991120311338
x36=18.8495552124105x_{36} = -18.8495552124105
x37=69.115038794053x_{37} = 69.115038794053
x38=87.9645947692094x_{38} = -87.9645947692094
x39=0x_{39} = 0
x40=87.9645946044253x_{40} = 87.9645946044253
x41=50.265482641087x_{41} = -50.265482641087
x42=25.1327416384075x_{42} = 25.1327416384075
x43=12.5663703112531x_{43} = -12.5663703112531
x44=6.2831858160515x_{44} = -6.2831858160515
x45=75.3982231720141x_{45} = -75.3982231720141
x46=69.1150386869085x_{46} = -69.1150386869085
x47=25.1327415297174x_{47} = -25.1327415297174
x48=37.6991113348642x_{48} = 37.6991113348642
x49=69.1150379887504x_{49} = 69.1150379887504
x50=12.5663704426592x_{50} = 12.5663704426592
x51=6.2831851275477x_{51} = -6.2831851275477
x52=87.9645938121814x_{52} = 87.9645938121814
x53=37.6991121287155x_{53} = -37.6991121287155
x54=81.6814075578313x_{54} = -81.6814075578313
x55=3.40772025642919107x_{55} = 3.40772025642919 \cdot 10^{-7}
x56=100.530964626003x_{56} = -100.530964626003
x57=81.6814092565354x_{57} = -81.6814092565354
x58=18.8495555173448x_{58} = -18.8495555173448
x59=37.6991118772631x_{59} = -37.6991118772631
x60=75.3982232188727x_{60} = 75.3982232188727
x61=43.9822967932182x_{61} = -43.9822967932182
x62=31.4159260208155x_{62} = -31.4159260208155
x63=94.2477794452815x_{63} = -94.2477794452815
x64=6.28318528420851x_{64} = 6.28318528420851
x65=94.2477792651059x_{65} = 94.2477792651059
x66=81.6814090382277x_{66} = -81.6814090382277
x67=94.2477796093523x_{67} = 94.2477796093523
x68=6.28318555849548x_{68} = -6.28318555849548
x69=50.2654821322586x_{69} = 50.2654821322586
x70=25.1327408328211x_{70} = 25.1327408328211
x71=50.2654822863493x_{71} = -50.2654822863493
x72=62.8318527849002x_{72} = 62.8318527849002
x73=43.9822974733639x_{73} = 43.9822974733639
x74=81.6814091897036x_{74} = 81.6814091897036
x75=6.28318500093652x_{75} = 6.28318500093652
x76=81.6814084945807x_{76} = -81.6814084945807
x77=12.5663711301703x_{77} = 12.5663711301703
x78=43.9822971694647x_{78} = 43.9822971694647
x79=75.3982240031607x_{79} = 75.3982240031607
x80=75.3982231045728x_{80} = -75.3982231045728
x81=43.9822966661001x_{81} = 43.9822966661001
x82=31.4159260648825x_{82} = 31.4159260648825
x83=18.8495556275525x_{83} = 18.8495556275525
x84=18.8495564031971x_{84} = 18.8495564031971
x85=50.2654829439723x_{85} = 50.2654829439723
x86=56.5486676011951x_{86} = 56.5486676011951
x87=4.79511606158654107x_{87} = -4.79511606158654 \cdot 10^{-7}
x88=87.9645943586158x_{88} = -87.9645943586158
This roots
x56=100.530964626003x_{56} = -100.530964626003
x10=94.2477801171671x_{10} = -94.2477801171671
x13=94.2477797298079x_{13} = -94.2477797298079
x63=94.2477794452815x_{63} = -94.2477794452815
x38=87.9645947692094x_{38} = -87.9645947692094
x88=87.9645943586158x_{88} = -87.9645943586158
x14=87.964593928489x_{14} = -87.964593928489
x57=81.6814092565354x_{57} = -81.6814092565354
x66=81.6814090382277x_{66} = -81.6814090382277
x76=81.6814084945807x_{76} = -81.6814084945807
x54=81.6814075578313x_{54} = -81.6814075578313
x19=75.3982238741744x_{19} = -75.3982238741744
x45=75.3982231720141x_{45} = -75.3982231720141
x80=75.3982231045728x_{80} = -75.3982231045728
x46=69.1150386869085x_{46} = -69.1150386869085
x27=69.1150379045123x_{27} = -69.1150379045123
x15=62.8318534787248x_{15} = -62.8318534787248
x28=62.831852673202x_{28} = -62.831852673202
x22=56.5486682426592x_{22} = -56.5486682426592
x26=56.5486674685864x_{26} = -56.5486674685864
x5=50.2654829667315x_{5} = -50.2654829667315
x41=50.265482641087x_{41} = -50.265482641087
x71=50.2654822863493x_{71} = -50.2654822863493
x12=43.9822976246252x_{12} = -43.9822976246252
x24=43.9822971745392x_{24} = -43.9822971745392
x61=43.9822967932182x_{61} = -43.9822967932182
x53=37.6991121287155x_{53} = -37.6991121287155
x59=37.6991118772631x_{59} = -37.6991118772631
x4=37.6991113479743x_{4} = -37.6991113479743
x32=31.4159267157965x_{32} = -31.4159267157965
x3=31.4159260507536x_{3} = -31.4159260507536
x62=31.4159260208155x_{62} = -31.4159260208155
x47=25.1327415297174x_{47} = -25.1327415297174
x29=25.1327407505866x_{29} = -25.1327407505866
x6=18.8495563230046x_{6} = -18.8495563230046
x58=18.8495555173448x_{58} = -18.8495555173448
x36=18.8495552124105x_{36} = -18.8495552124105
x23=12.5663710889626x_{23} = -12.5663710889626
x43=12.5663703112531x_{43} = -12.5663703112531
x44=6.2831858160515x_{44} = -6.2831858160515
x68=6.28318555849548x_{68} = -6.28318555849548
x51=6.2831851275477x_{51} = -6.2831851275477
x87=4.79511606158654107x_{87} = -4.79511606158654 \cdot 10^{-7}
x39=0x_{39} = 0
x55=3.40772025642919107x_{55} = 3.40772025642919 \cdot 10^{-7}
x75=6.28318500093652x_{75} = 6.28318500093652
x64=6.28318528420851x_{64} = 6.28318528420851
x17=6.28318579821791x_{17} = 6.28318579821791
x34=6.28318626747926x_{34} = 6.28318626747926
x50=12.5663704426592x_{50} = 12.5663704426592
x11=12.5663710110881x_{11} = 12.5663710110881
x77=12.5663711301703x_{77} = 12.5663711301703
x83=18.8495556275525x_{83} = 18.8495556275525
x84=18.8495564031971x_{84} = 18.8495564031971
x70=25.1327408328211x_{70} = 25.1327408328211
x42=25.1327416384075x_{42} = 25.1327416384075
x82=31.4159260648825x_{82} = 31.4159260648825
x9=31.4159268459961x_{9} = 31.4159268459961
x48=37.6991113348642x_{48} = 37.6991113348642
x2=37.6991115173992x_{2} = 37.6991115173992
x35=37.6991120311338x_{35} = 37.6991120311338
x81=43.9822966661001x_{81} = 43.9822966661001
x78=43.9822971694647x_{78} = 43.9822971694647
x73=43.9822974733639x_{73} = 43.9822974733639
x69=50.2654821322586x_{69} = 50.2654821322586
x31=50.2654824463392x_{31} = 50.2654824463392
x85=50.2654829439723x_{85} = 50.2654829439723
x20=56.5486668532011x_{20} = 56.5486668532011
x86=56.5486676011951x_{86} = 56.5486676011951
x33=56.5486680806249x_{33} = 56.5486680806249
x30=56.5486682809363x_{30} = 56.5486682809363
x72=62.8318527849002x_{72} = 62.8318527849002
x1=62.8318535568358x_{1} = 62.8318535568358
x49=69.1150379887504x_{49} = 69.1150379887504
x37=69.115038794053x_{37} = 69.115038794053
x60=75.3982232188727x_{60} = 75.3982232188727
x79=75.3982240031607x_{79} = 75.3982240031607
x16=81.6814084860076x_{16} = 81.6814084860076
x25=81.6814085860518x_{25} = 81.6814085860518
x74=81.6814091897036x_{74} = 81.6814091897036
x52=87.9645938121814x_{52} = 87.9645938121814
x21=87.964594335905x_{21} = 87.964594335905
x40=87.9645946044253x_{40} = 87.9645946044253
x65=94.2477792651059x_{65} = 94.2477792651059
x67=94.2477796093523x_{67} = 94.2477796093523
x7=94.2477800892631x_{7} = 94.2477800892631
x18=100.530964759815x_{18} = 100.530964759815
x8=100.530965157364x_{8} = 100.530965157364
is the points with change the sign of the inequality expression.
First define with the sign to the leftmost point:
x0x56x_{0} \leq x_{56}
For example, let's take the point
x0=x56110x_{0} = x_{56} - \frac{1}{10}
=
100.530964626003+110-100.530964626003 + - \frac{1}{10}
=
100.630964626003-100.630964626003
substitute to the expression
cos(t)1\cos{\left(t \right)} \leq 1
cos(t)1\cos{\left(t \right)} \leq 1
cos(t) <= 1

Then
x100.530964626003x \leq -100.530964626003
no execute
one of the solutions of our inequality is:
x100.530964626003x94.2477801171671x \geq -100.530964626003 \wedge x \leq -94.2477801171671
         _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
        /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \  
-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
       x56      x10      x13      x63      x38      x88      x14      x57      x66      x76      x54      x19      x45      x80      x46      x27      x15      x28      x22      x26      x5      x41      x71      x12      x24      x61      x53      x59      x4      x32      x3      x62      x47      x29      x6      x58      x36      x23      x43      x44      x68      x51      x87      x39      x55      x75      x64      x17      x34      x50      x11      x77      x83      x84      x70      x42      x82      x9      x48      x2      x35      x81      x78      x73      x69      x31      x85      x20      x86      x33      x30      x72      x1      x49      x37      x60      x79      x16      x25      x74      x52      x21      x40      x65      x67      x7      x18      x8

Other solutions will get with the changeover to the next point
etc.
The answer:
x100.530964626003x94.2477801171671x \geq -100.530964626003 \wedge x \leq -94.2477801171671
x94.2477797298079x94.2477794452815x \geq -94.2477797298079 \wedge x \leq -94.2477794452815
x87.9645947692094x87.9645943586158x \geq -87.9645947692094 \wedge x \leq -87.9645943586158
x87.964593928489x81.6814092565354x \geq -87.964593928489 \wedge x \leq -81.6814092565354
x81.6814090382277x81.6814084945807x \geq -81.6814090382277 \wedge x \leq -81.6814084945807
x81.6814075578313x75.3982238741744x \geq -81.6814075578313 \wedge x \leq -75.3982238741744
x75.3982231720141x75.3982231045728x \geq -75.3982231720141 \wedge x \leq -75.3982231045728
x69.1150386869085x69.1150379045123x \geq -69.1150386869085 \wedge x \leq -69.1150379045123
x62.8318534787248x62.831852673202x \geq -62.8318534787248 \wedge x \leq -62.831852673202
x56.5486682426592x56.5486674685864x \geq -56.5486682426592 \wedge x \leq -56.5486674685864
x50.2654829667315x50.265482641087x \geq -50.2654829667315 \wedge x \leq -50.265482641087
x50.2654822863493x43.9822976246252x \geq -50.2654822863493 \wedge x \leq -43.9822976246252
x43.9822971745392x43.9822967932182x \geq -43.9822971745392 \wedge x \leq -43.9822967932182
x37.6991121287155x37.6991118772631x \geq -37.6991121287155 \wedge x \leq -37.6991118772631
x37.6991113479743x31.4159267157965x \geq -37.6991113479743 \wedge x \leq -31.4159267157965
x31.4159260507536x31.4159260208155x \geq -31.4159260507536 \wedge x \leq -31.4159260208155
x25.1327415297174x25.1327407505866x \geq -25.1327415297174 \wedge x \leq -25.1327407505866
x18.8495563230046x18.8495555173448x \geq -18.8495563230046 \wedge x \leq -18.8495555173448
x18.8495552124105x12.5663710889626x \geq -18.8495552124105 \wedge x \leq -12.5663710889626
x12.5663703112531x6.2831858160515x \geq -12.5663703112531 \wedge x \leq -6.2831858160515
x6.28318555849548x6.2831851275477x \geq -6.28318555849548 \wedge x \leq -6.2831851275477
x4.79511606158654107x0x \geq -4.79511606158654 \cdot 10^{-7} \wedge x \leq 0
x3.40772025642919107x6.28318500093652x \geq 3.40772025642919 \cdot 10^{-7} \wedge x \leq 6.28318500093652
x6.28318528420851x6.28318579821791x \geq 6.28318528420851 \wedge x \leq 6.28318579821791
x6.28318626747926x12.5663704426592x \geq 6.28318626747926 \wedge x \leq 12.5663704426592
x12.5663710110881x12.5663711301703x \geq 12.5663710110881 \wedge x \leq 12.5663711301703
x18.8495556275525x18.8495564031971x \geq 18.8495556275525 \wedge x \leq 18.8495564031971
x25.1327408328211x25.1327416384075x \geq 25.1327408328211 \wedge x \leq 25.1327416384075
x31.4159260648825x31.4159268459961x \geq 31.4159260648825 \wedge x \leq 31.4159268459961
x37.6991113348642x37.6991115173992x \geq 37.6991113348642 \wedge x \leq 37.6991115173992
x37.6991120311338x43.9822966661001x \geq 37.6991120311338 \wedge x \leq 43.9822966661001
x43.9822971694647x43.9822974733639x \geq 43.9822971694647 \wedge x \leq 43.9822974733639
x50.2654821322586x50.2654824463392x \geq 50.2654821322586 \wedge x \leq 50.2654824463392
x50.2654829439723x56.5486668532011x \geq 50.2654829439723 \wedge x \leq 56.5486668532011
x56.5486676011951x56.5486680806249x \geq 56.5486676011951 \wedge x \leq 56.5486680806249
x56.5486682809363x62.8318527849002x \geq 56.5486682809363 \wedge x \leq 62.8318527849002
x62.8318535568358x69.1150379887504x \geq 62.8318535568358 \wedge x \leq 69.1150379887504
x69.115038794053x75.3982232188727x \geq 69.115038794053 \wedge x \leq 75.3982232188727
x75.3982240031607x81.6814084860076x \geq 75.3982240031607 \wedge x \leq 81.6814084860076
x81.6814085860518x81.6814091897036x \geq 81.6814085860518 \wedge x \leq 81.6814091897036
x87.9645938121814x87.964594335905x \geq 87.9645938121814 \wedge x \leq 87.964594335905
x87.9645946044253x94.2477792651059x \geq 87.9645946044253 \wedge x \leq 94.2477792651059
x94.2477796093523x94.2477800892631x \geq 94.2477796093523 \wedge x \leq 94.2477800892631
x100.530964759815x100.530965157364x \geq 100.530964759815 \wedge x \leq 100.530965157364
Rapid solution
This inequality holds true always