Mister Exam

Limit of the function cos(t)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim cos(t)
t->oo      
$$\lim_{t \to \infty} \cos{\left(t \right)}$$
Limit(cos(t), t, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-1, 1>
$$\left\langle -1, 1\right\rangle$$
Other limits t→0, -oo, +oo, 1
$$\lim_{t \to \infty} \cos{\left(t \right)} = \left\langle -1, 1\right\rangle$$
$$\lim_{t \to 0^-} \cos{\left(t \right)} = 1$$
More at t→0 from the left
$$\lim_{t \to 0^+} \cos{\left(t \right)} = 1$$
More at t→0 from the right
$$\lim_{t \to 1^-} \cos{\left(t \right)} = \cos{\left(1 \right)}$$
More at t→1 from the left
$$\lim_{t \to 1^+} \cos{\left(t \right)} = \cos{\left(1 \right)}$$
More at t→1 from the right
$$\lim_{t \to -\infty} \cos{\left(t \right)} = \left\langle -1, 1\right\rangle$$
More at t→-oo
The graph
Limit of the function cos(t)