Mister Exam

Limit of the function cos(t)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim cos(t)
t->oo      
limtcos(t)\lim_{t \to \infty} \cos{\left(t \right)}
Limit(cos(t), t, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
<-1, 1>
1,1\left\langle -1, 1\right\rangle
Other limits t→0, -oo, +oo, 1
limtcos(t)=1,1\lim_{t \to \infty} \cos{\left(t \right)} = \left\langle -1, 1\right\rangle
limt0cos(t)=1\lim_{t \to 0^-} \cos{\left(t \right)} = 1
More at t→0 from the left
limt0+cos(t)=1\lim_{t \to 0^+} \cos{\left(t \right)} = 1
More at t→0 from the right
limt1cos(t)=cos(1)\lim_{t \to 1^-} \cos{\left(t \right)} = \cos{\left(1 \right)}
More at t→1 from the left
limt1+cos(t)=cos(1)\lim_{t \to 1^+} \cos{\left(t \right)} = \cos{\left(1 \right)}
More at t→1 from the right
limtcos(t)=1,1\lim_{t \to -\infty} \cos{\left(t \right)} = \left\langle -1, 1\right\rangle
More at t→-oo
The graph
Limit of the function cos(t)