In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivativex(−2cot2(2x)−21)+cot(2x)=0Solve this equationThe roots of this equation
x1=1.52707904860319⋅10−17x2=2.23576865397504⋅10−17x3=1.59668259179644⋅10−16x4=−1.15725582418354⋅10−16x5=−1.03125774822142⋅10−16x6=3.26384634187708⋅10−16x7=3.8991968647723⋅10−15x8=−1.14081209393754⋅10−18x9=−9.7885699769805⋅10−17x10=−5.93046655993782⋅10−17x11=1.72285514463146⋅10−14x12=2.73073920295658⋅10−18x13=−1.27878285278132⋅10−14x14=−8.17704180853909⋅10−16x15=1.42341105080165⋅10−17x16=1.11719724635132⋅10−17x17=9.94846102116844⋅10−18x18=9.63403898273477⋅10−17x19=3.81785798127671⋅10−15x20=−3.86068492929349⋅10−16x21=1.25842485455245⋅10−16x22=−2.3951484385737⋅10−16x23=−4.79273379738631⋅10−19x24=2.0736465771844⋅10−19x25=−1.47369389671908⋅10−13x26=−6.39496545398449⋅10−18x27=−5.19078680712148⋅10−17x28=5.4218915002628⋅10−17x29=−3.84488604463226⋅10−17x30=2.19371504995755⋅10−15x31=1.36554056592777⋅10−15x32=6.16366879916214⋅10−18x33=−1.9680036684828⋅10−15x34=−1.08756072736682⋅10−15x35=−2.66945581377393⋅10−17x36=−1.46479077536905⋅10−18x37=1.67937364663135⋅10−15x38=8.43698087053401⋅10−15x39=2.83986751875031⋅10−15x40=−5.05569600354816⋅10−17x41=−1.9863529512231⋅10−19x42=−2.64163878352735⋅10−16x43=1.90677010489577⋅10−17x44=−1.36222961689762⋅10−19x45=−1.11417406398154⋅10−15x46=4.50932681131416⋅10−14x47=2.1641423377405⋅10−17x48=−3.80119294448226⋅10−16x49=6.55183592229414⋅10−19x50=8.7035549441581⋅10−15x51=1.04949196674696⋅10−16x52=−1.37583055851796⋅10−14x53=−1.1823647648489⋅10−15x54=−3.87889712429163⋅10−15x55=5.03530051557472⋅10−17x56=7.24511386253541⋅10−17x57=2.41321271410711⋅10−15x58=−1.11679598099599⋅10−15x59=8.10018196837667⋅10−17x60=−3.00353497873608⋅10−17x61=−1.20485599377412⋅10−18x62=2.22808074492689⋅10−16x63=−3.25969474832924⋅10−14x64=−1.76862305992214⋅10−14x65=−2.80851332268296⋅10−16x66=−6.9313016200319⋅10−18x67=1.2355770545046⋅10−17x68=7.15722835865887⋅10−18x69=−9.58452216486739⋅10−17x70=1.9689054691717⋅10−17x71=1.75246451767813⋅10−15x72=1.19114989391017⋅10−16x73=8.15378087315969⋅10−18x74=−2.04328546954794⋅10−16x75=3.1976288208021⋅10−14x76=8.39272508711364⋅10−16x77=3.53383582269823⋅10−18x78=−2.1294523165041⋅10−14x79=2.07101215609992⋅10−17x80=−6.28937394428614⋅10−17x81=2.26018040886806⋅10−13The values of the extrema at the points:
(1.5270790486031883e-17, 2)
(2.2357686539750427e-17, 2)
(1.5966825917964395e-16, 2)
(-1.1572558241835437e-16, 2)
(-1.0312577482214217e-16, 2)
(3.263846341877079e-16, 2)
(3.899196864772304e-15, 2)
(-1.140812093937536e-18, 2)
(-9.788569976980496e-17, 2)
(-5.930466559937818e-17, 2)
(1.722855144631456e-14, 2)
(2.730739202956583e-18, 2)
(-1.2787828527813194e-14, 2)
(-8.177041808539089e-16, 2)
(1.4234110508016475e-17, 2)
(1.1171972463513221e-17, 2)
(9.948461021168444e-18, 2)
(9.634038982734767e-17, 2)
(3.817857981276714e-15, 2)
(-3.8606849292934865e-16, 2)
(1.2584248545524538e-16, 2)
(-2.3951484385736968e-16, 2)
(-4.7927337973863105e-19, 2)
(2.0736465771844e-19, 2)
(-1.4736938967190768e-13, 2)
(-6.394965453984489e-18, 2)
(-5.1907868071214814e-17, 2)
(5.421891500262799e-17, 2)
(-3.844886044632263e-17, 2)
(2.1937150499575476e-15, 2)
(1.3655405659277714e-15, 2)
(6.1636687991621444e-18, 2)
(-1.9680036684828037e-15, 2)
(-1.0875607273668173e-15, 2)
(-2.6694558137739254e-17, 2)
(-1.4647907753690458e-18, 2)
(1.679373646631346e-15, 2)
(8.436980870534007e-15, 2)
(2.839867518750307e-15, 2)
(-5.055696003548158e-17, 2)
(-1.9863529512231008e-19, 2)
(-2.6416387835273495e-16, 2)
(1.9067701048957716e-17, 2)
(-1.3622296168976195e-19, 2)
(-1.114174063981536e-15, 2)
(4.5093268113141585e-14, 2)
(2.1641423377405037e-17, 2)
(-3.8011929444822644e-16, 2)
(6.551835922294143e-19, 2)
(8.703554944158104e-15, 2)
(1.0494919667469625e-16, 2)
(-1.3758305585179636e-14, 2)
(-1.1823647648488985e-15, 2)
(-3.8788971242916326e-15, 2)
(5.0353005155747165e-17, 2)
(7.245113862535405e-17, 2)
(2.4132127141071104e-15, 2)
(-1.1167959809959936e-15, 2)
(8.10018196837667e-17, 2)
(-3.003534978736078e-17, 2)
(-1.204855993774117e-18, 2)
(2.228080744926894e-16, 2)
(-3.2596947483292436e-14, 2)
(-1.7686230599221415e-14, 2)
(-2.8085133226829605e-16, 2)
(-6.9313016200318954e-18, 2)
(1.2355770545046002e-17, 2)
(7.157228358658869e-18, 2)
(-9.584522164867388e-17, 2)
(1.9689054691716976e-17, 2)
(1.752464517678129e-15, 2)
(1.1911498939101655e-16, 2)
(8.153780873159693e-18, 2)
(-2.0432854695479367e-16, 2)
(3.1976288208021023e-14, 2)
(8.392725087113635e-16, 2)
(3.533835822698227e-18, 2)
(-2.1294523165041048e-14, 2)
(2.0710121560999218e-17, 2)
(-6.289373944286139e-17, 2)
(2.2601804088680598e-13, 2)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
Maxima of the function at points:
x81=1.52707904860319⋅10−17x81=2.23576865397504⋅10−17x81=1.59668259179644⋅10−16x81=−1.15725582418354⋅10−16x81=−1.03125774822142⋅10−16x81=3.26384634187708⋅10−16x81=3.8991968647723⋅10−15x81=−1.14081209393754⋅10−18x81=−9.7885699769805⋅10−17x81=−5.93046655993782⋅10−17x81=1.72285514463146⋅10−14x81=2.73073920295658⋅10−18x81=−1.27878285278132⋅10−14x81=−8.17704180853909⋅10−16x81=1.42341105080165⋅10−17x81=1.11719724635132⋅10−17x81=9.94846102116844⋅10−18x81=9.63403898273477⋅10−17x81=3.81785798127671⋅10−15x81=−3.86068492929349⋅10−16x81=1.25842485455245⋅10−16x81=−2.3951484385737⋅10−16x81=−4.79273379738631⋅10−19x81=2.0736465771844⋅10−19x81=−1.47369389671908⋅10−13x81=−6.39496545398449⋅10−18x81=−5.19078680712148⋅10−17x81=5.4218915002628⋅10−17x81=−3.84488604463226⋅10−17x81=2.19371504995755⋅10−15x81=1.36554056592777⋅10−15x81=6.16366879916214⋅10−18x81=−1.9680036684828⋅10−15x81=−1.08756072736682⋅10−15x81=−2.66945581377393⋅10−17x81=−1.46479077536905⋅10−18x81=1.67937364663135⋅10−15x81=8.43698087053401⋅10−15x81=2.83986751875031⋅10−15x81=−5.05569600354816⋅10−17x81=−1.9863529512231⋅10−19x81=−2.64163878352735⋅10−16x81=1.90677010489577⋅10−17x81=−1.36222961689762⋅10−19x81=−1.11417406398154⋅10−15x81=4.50932681131416⋅10−14x81=2.1641423377405⋅10−17x81=−3.80119294448226⋅10−16x81=6.55183592229414⋅10−19x81=8.7035549441581⋅10−15x81=1.04949196674696⋅10−16x81=−1.37583055851796⋅10−14x81=−1.1823647648489⋅10−15x81=−3.87889712429163⋅10−15x81=5.03530051557472⋅10−17x81=7.24511386253541⋅10−17x81=2.41321271410711⋅10−15x81=−1.11679598099599⋅10−15x81=8.10018196837667⋅10−17x81=−3.00353497873608⋅10−17x81=−1.20485599377412⋅10−18x81=2.22808074492689⋅10−16x81=−3.25969474832924⋅10−14x81=−1.76862305992214⋅10−14x81=−2.80851332268296⋅10−16x81=−6.9313016200319⋅10−18x81=1.2355770545046⋅10−17x81=7.15722835865887⋅10−18x81=−9.58452216486739⋅10−17x81=1.9689054691717⋅10−17x81=1.75246451767813⋅10−15x81=1.19114989391017⋅10−16x81=8.15378087315969⋅10−18x81=−2.04328546954794⋅10−16x81=3.1976288208021⋅10−14x81=8.39272508711364⋅10−16x81=3.53383582269823⋅10−18x81=−2.1294523165041⋅10−14x81=2.07101215609992⋅10−17x81=−6.28937394428614⋅10−17x81=2.26018040886806⋅10−13Decreasing at intervals
(−∞,−1.47369389671908⋅10−13]Increasing at intervals
[2.26018040886806⋅10−13,∞)