We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+} x = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\cot{\left(\frac{x}{2} \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \frac{1}{\cot{\left(\frac{x}{2} \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}\right)$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)