Mister Exam

Other calculators:


x*cot(x/2)

Limit of the function x*cot(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /x\\
 lim |x*cot|-||
x->0+\     \2//
$$\lim_{x \to 0^+}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
Limit(x*cot(x/2), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} x = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \frac{1}{\cot{\left(\frac{x}{2} \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \frac{1}{\cot{\left(\frac{x}{2} \right)}}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{\frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}\right)$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
2
$$2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(x \cot{\left(\frac{x}{2} \right)}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \cot{\left(\frac{x}{2} \right)}\right) = 2$$
$$\lim_{x \to \infty}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(x \cot{\left(\frac{x}{2} \right)}\right) = \frac{1}{\tan{\left(\frac{1}{2} \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \cot{\left(\frac{x}{2} \right)}\right) = \frac{1}{\tan{\left(\frac{1}{2} \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
More at x→-oo
One‐sided limits [src]
     /     /x\\
 lim |x*cot|-||
x->0+\     \2//
$$\lim_{x \to 0^+}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
2
$$2$$
= 2.0
     /     /x\\
 lim |x*cot|-||
x->0-\     \2//
$$\lim_{x \to 0^-}\left(x \cot{\left(\frac{x}{2} \right)}\right)$$
2
$$2$$
= 2.0
= 2.0
Numerical answer [src]
2.0
2.0
The graph
Limit of the function x*cot(x/2)