Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\sin^{9}{\left(x \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
$$x_{2} = \pi$$
Numerical solution$$x_{1} = 3.10752999144077$$
$$x_{2} = 28.2721144306237$$
$$x_{3} = 0$$
$$x_{4} = 12.5381781691526$$
$$x_{5} = -37.703751438092$$
$$x_{6} = -53.4374964446261$$
$$x_{7} = 59.7200873743091$$
$$x_{8} = 21.9920246662196$$
$$x_{9} = 43.9840492515016$$
$$x_{10} = -65.9760736747134$$
$$x_{11} = -31.4456085636977$$
$$x_{12} = -97.4212607937406$$
$$x_{13} = -28.2477328398739$$
$$x_{14} = -9.45371699572448$$
$$x_{15} = -50.2396994997253$$
$$x_{16} = -53.4087098348563$$
$$x_{17} = 100.505792928935$$
$$x_{18} = -59.6957059649496$$
$$x_{19} = 87.9491418141617$$
$$x_{20} = -94.2236457138391$$
$$x_{21} = -81.6876599817826$$
$$x_{22} = 37.7281395604527$$
$$x_{23} = -43.984049251499$$
$$x_{24} = 81.712030147698$$
$$x_{25} = -72.2316705101047$$
$$x_{26} = 50.2640702310753$$
$$x_{27} = 78.5138843156539$$
$$x_{28} = -15.7117964791255$$
$$x_{29} = 65.9760736748862$$
$$x_{30} = 6.28015883558255$$
$$x_{31} = -6.25577068137655$$
$$x_{32} = 78.4978230725905$$
$$x_{33} = 87.9680978552258$$
$$x_{34} = -21.9920246662196$$
$$x_{35} = -87.9680978516598$$
$$x_{36} = 72.2560261621947$$
$$x_{37} = -97.4316669997228$$
$$x_{38} = 15.736186831378$$
$$x_{39} = 56.5219789197166$$
$$x_{40} = 94.2479821492774$$
$$x_{41} = 34.5300768389344$$
$$x_{42} = -75.4293805501721$$