Mister Exam

Other calculators

Integral of sin(x)^9 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     9      
 |  sin (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \sin^{9}{\left(x \right)}\, dx$$
Integral(sin(x)^9, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of is when :

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                     
 |                                5         9           3           7   
 |    9                      6*cos (x)   cos (x)   4*cos (x)   4*cos (x)
 | sin (x) dx = C - cos(x) - --------- - ------- + --------- + ---------
 |                               5          9          3           7    
/                                                                       
$$\int \sin^{9}{\left(x \right)}\, dx = C - \frac{\cos^{9}{\left(x \right)}}{9} + \frac{4 \cos^{7}{\left(x \right)}}{7} - \frac{6 \cos^{5}{\left(x \right)}}{5} + \frac{4 \cos^{3}{\left(x \right)}}{3} - \cos{\left(x \right)}$$
The graph
The answer [src]
                    5         9           3           7   
128            6*cos (1)   cos (1)   4*cos (1)   4*cos (1)
--- - cos(1) - --------- - ------- + --------- + ---------
315                5          9          3           7    
$$- \cos{\left(1 \right)} - \frac{6 \cos^{5}{\left(1 \right)}}{5} - \frac{\cos^{9}{\left(1 \right)}}{9} + \frac{4 \cos^{7}{\left(1 \right)}}{7} + \frac{4 \cos^{3}{\left(1 \right)}}{3} + \frac{128}{315}$$
=
=
                    5         9           3           7   
128            6*cos (1)   cos (1)   4*cos (1)   4*cos (1)
--- - cos(1) - --------- - ------- + --------- + ---------
315                5          9          3           7    
$$- \cos{\left(1 \right)} - \frac{6 \cos^{5}{\left(1 \right)}}{5} - \frac{\cos^{9}{\left(1 \right)}}{9} + \frac{4 \cos^{7}{\left(1 \right)}}{7} + \frac{4 \cos^{3}{\left(1 \right)}}{3} + \frac{128}{315}$$
128/315 - cos(1) - 6*cos(1)^5/5 - cos(1)^9/9 + 4*cos(1)^3/3 + 4*cos(1)^7/7
Numerical answer [src]
0.028342532187773
0.028342532187773

    Use the examples entering the upper and lower limits of integration.