Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\cos{\left(\frac{x}{3} \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = \frac{3 \pi}{2}$$
$$x_{2} = \frac{9 \pi}{2}$$
Numerical solution$$x_{1} = 98.9601685880785$$
$$x_{2} = 61.261056745001$$
$$x_{3} = 23.5619449019235$$
$$x_{4} = -4.71238898038469$$
$$x_{5} = -249.756615960389$$
$$x_{6} = 5659.57916544201$$
$$x_{7} = -70.6858347057703$$
$$x_{8} = 51.8362787842316$$
$$x_{9} = -23.5619449019235$$
$$x_{10} = 70.6858347057703$$
$$x_{11} = -98.9601685880785$$
$$x_{12} = -61.261056745001$$
$$x_{13} = -80.1106126665397$$
$$x_{14} = 2653.07499595658$$
$$x_{15} = -51.8362787842316$$
$$x_{16} = 155.508836352695$$
$$x_{17} = 80.1106126665397$$
$$x_{18} = 4.71238898038469$$
$$x_{19} = 32.9867228626928$$
$$x_{20} = -89.5353906273091$$
$$x_{21} = -4867.89781673738$$
$$x_{22} = 42.4115008234622$$
$$x_{23} = -14.1371669411541$$
$$x_{24} = 89.5353906273091$$
$$x_{25} = 14.1371669411541$$
$$x_{26} = -42.4115008234622$$
$$x_{27} = -32.9867228626928$$