Mister Exam

Other calculators:


cos(x/3)

Limit of the function cos(x/3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /x\
 lim cos|-|
x->0+   \3/
$$\lim_{x \to 0^+} \cos{\left(\frac{x}{3} \right)}$$
Limit(cos(x/3), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
        /x\
 lim cos|-|
x->0+   \3/
$$\lim_{x \to 0^+} \cos{\left(\frac{x}{3} \right)}$$
1
$$1$$
= 1
        /x\
 lim cos|-|
x->0-   \3/
$$\lim_{x \to 0^-} \cos{\left(\frac{x}{3} \right)}$$
1
$$1$$
= 1
= 1
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \cos{\left(\frac{x}{3} \right)} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \cos{\left(\frac{x}{3} \right)} = 1$$
$$\lim_{x \to \infty} \cos{\left(\frac{x}{3} \right)} = \left\langle -1, 1\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \cos{\left(\frac{x}{3} \right)} = \cos{\left(\frac{1}{3} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \cos{\left(\frac{x}{3} \right)} = \cos{\left(\frac{1}{3} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \cos{\left(\frac{x}{3} \right)} = \left\langle -1, 1\right\rangle$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function cos(x/3)