Mister Exam

Other calculators


2^x=6-x

2^x=6-x equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x        
2  = 6 - x
$$2^{x} = 6 - x$$
The graph
Rapid solution [src]
x1 = 2
$$x_{1} = 2$$
     -W(log(18446744073709551616)) + log(64)
x2 = ---------------------------------------
                      log(2)                
$$x_{2} = \frac{- W\left(\log{\left(18446744073709551616 \right)}\right) + \log{\left(64 \right)}}{\log{\left(2 \right)}}$$
x2 = (-LambertW(log(18446744073709551616)) + log(64))/log(2)
Sum and product of roots [src]
sum
    -W(log(18446744073709551616)) + log(64)
2 + ---------------------------------------
                     log(2)                
$$2 + \frac{- W\left(\log{\left(18446744073709551616 \right)}\right) + \log{\left(64 \right)}}{\log{\left(2 \right)}}$$
=
    -W(log(18446744073709551616)) + log(64)
2 + ---------------------------------------
                     log(2)                
$$2 + \frac{- W\left(\log{\left(18446744073709551616 \right)}\right) + \log{\left(64 \right)}}{\log{\left(2 \right)}}$$
product
  -W(log(18446744073709551616)) + log(64)
2*---------------------------------------
                   log(2)                
$$2 \frac{- W\left(\log{\left(18446744073709551616 \right)}\right) + \log{\left(64 \right)}}{\log{\left(2 \right)}}$$
=
2*(-W(log(18446744073709551616)) + log(64))
-------------------------------------------
                   log(2)                  
$$\frac{2 \left(- W\left(\log{\left(18446744073709551616 \right)}\right) + \log{\left(64 \right)}\right)}{\log{\left(2 \right)}}$$
2*(-LambertW(log(18446744073709551616)) + log(64))/log(2)
Numerical answer [src]
x1 = 2.0
x1 = 2.0
The graph
2^x=6-x equation