Mister Exam

Other calculators:


6-x

Limit of the function 6-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (6 - x)
x->6+       
limx6+(6x)\lim_{x \to 6^+}\left(6 - x\right)
Limit(6 - x, x, 6)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-10.0-7.5-5.0-2.50.02.55.07.510.0-2525
One‐sided limits [src]
 lim (6 - x)
x->6+       
limx6+(6x)\lim_{x \to 6^+}\left(6 - x\right)
0
00
= -8.5563925773619e-33
 lim (6 - x)
x->6-       
limx6(6x)\lim_{x \to 6^-}\left(6 - x\right)
0
00
= 8.5563925773619e-33
= 8.5563925773619e-33
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx6(6x)=0\lim_{x \to 6^-}\left(6 - x\right) = 0
More at x→6 from the left
limx6+(6x)=0\lim_{x \to 6^+}\left(6 - x\right) = 0
limx(6x)=\lim_{x \to \infty}\left(6 - x\right) = -\infty
More at x→oo
limx0(6x)=6\lim_{x \to 0^-}\left(6 - x\right) = 6
More at x→0 from the left
limx0+(6x)=6\lim_{x \to 0^+}\left(6 - x\right) = 6
More at x→0 from the right
limx1(6x)=5\lim_{x \to 1^-}\left(6 - x\right) = 5
More at x→1 from the left
limx1+(6x)=5\lim_{x \to 1^+}\left(6 - x\right) = 5
More at x→1 from the right
limx(6x)=\lim_{x \to -\infty}\left(6 - x\right) = \infty
More at x→-oo
Numerical answer [src]
-8.5563925773619e-33
-8.5563925773619e-33
The graph
Limit of the function 6-x