Mister Exam

Other calculators


2^x=2*x+8

2^x=2*x+8 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 x          
2  = 2*x + 8
$$2^{x} = 2 x + 8$$
The graph
Sum and product of roots [src]
sum
          /-log(2) \
         W|--------|
          \   32   /
4 + -4 - -----------
            log(2)  
$$\left(4\right) + \left(-4 - \frac{W\left(- \frac{\log{\left(2 \right)}}{32}\right)}{\log{\left(2 \right)}}\right)$$
=
  /-log(2) \ 
-W|--------| 
  \   32   / 
-------------
    log(2)   
$$- \frac{W\left(- \frac{\log{\left(2 \right)}}{32}\right)}{\log{\left(2 \right)}}$$
product
          /-log(2) \
         W|--------|
          \   32   /
4 * -4 - -----------
            log(2)  
$$\left(4\right) * \left(-4 - \frac{W\left(- \frac{\log{\left(2 \right)}}{32}\right)}{\log{\left(2 \right)}}\right)$$
=
         /-log(2) \
      4*W|--------|
         \   32   /
-16 - -------------
          log(2)   
$$-16 - \frac{4 W\left(- \frac{\log{\left(2 \right)}}{32}\right)}{\log{\left(2 \right)}}$$
Rapid solution [src]
x_1 = 4
$$x_{1} = 4$$
            /-log(2) \
           W|--------|
            \   32   /
x_2 = -4 - -----------
              log(2)  
$$x_{2} = -4 - \frac{W\left(- \frac{\log{\left(2 \right)}}{32}\right)}{\log{\left(2 \right)}}$$
Numerical answer [src]
x1 = -3.96805022061857
x2 = 4.0
x2 = 4.0
The graph
2^x=2*x+8 equation