Expand the expression in the equation
$$\left(\frac{21}{10} - 7 y\right) \left(9 y - 2\right) = 0$$
We get the quadratic equation
$$- 63 y^{2} + \frac{329 y}{10} - \frac{21}{5} = 0$$
This equation is of the form
a*y^2 + b*y + c = 0
A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$y_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$y_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = -63$$
$$b = \frac{329}{10}$$
$$c = - \frac{21}{5}$$
, then
D = b^2 - 4 * a * c =
(329/10)^2 - 4 * (-63) * (-21/5) = 2401/100
Because D > 0, then the equation has two roots.
y1 = (-b + sqrt(D)) / (2*a)
y2 = (-b - sqrt(D)) / (2*a)
or
$$y_{1} = \frac{2}{9}$$
$$y_{2} = \frac{3}{10}$$