Mister Exam

Other calculators


z^3+27=0

z^3+27=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3         
z  + 27 = 0
$$z^{3} + 27 = 0$$
Detail solution
Given the equation
$$z^{3} + 27 = 0$$
Because equation degree is equal to = 3 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root 3-th degree of the equation sides:
We get:
$$\sqrt[3]{z^{3}} = \sqrt[3]{-27}$$
or
$$z = 3 \sqrt[3]{-1}$$
Expand brackets in the right part
z = -3*1^1/3

We get the answer: z = 3*(-1)^(1/3)

All other 2 root(s) is the complex numbers.
do replacement:
$$w = z$$
then the equation will be the:
$$w^{3} = -27$$
Any complex number can presented so:
$$w = r e^{i p}$$
substitute to the equation
$$r^{3} e^{3 i p} = -27$$
where
$$r = 3$$
- the magnitude of the complex number
Substitute r:
$$e^{3 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = -1$$
so
$$\cos{\left(3 p \right)} = -1$$
and
$$\sin{\left(3 p \right)} = 0$$
then
$$p = \frac{2 \pi N}{3} + \frac{\pi}{3}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
$$w_{1} = -3$$
$$w_{2} = \frac{3}{2} - \frac{3 \sqrt{3} i}{2}$$
$$w_{3} = \frac{3}{2} + \frac{3 \sqrt{3} i}{2}$$
do backward replacement
$$w = z$$
$$z = w$$

The final answer:
$$z_{1} = -3$$
$$z_{2} = \frac{3}{2} - \frac{3 \sqrt{3} i}{2}$$
$$z_{3} = \frac{3}{2} + \frac{3 \sqrt{3} i}{2}$$
Vieta's Theorem
it is reduced cubic equation
$$p z^{2} + q z + v + z^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = 27$$
Vieta Formulas
$$z_{1} + z_{2} + z_{3} = - p$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = q$$
$$z_{1} z_{2} z_{3} = v$$
$$z_{1} + z_{2} + z_{3} = 0$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = 0$$
$$z_{1} z_{2} z_{3} = 27$$
The graph
Rapid solution [src]
z1 = -3
$$z_{1} = -3$$
               ___
     3   3*I*\/ 3 
z2 = - - ---------
     2       2    
$$z_{2} = \frac{3}{2} - \frac{3 \sqrt{3} i}{2}$$
               ___
     3   3*I*\/ 3 
z3 = - + ---------
     2       2    
$$z_{3} = \frac{3}{2} + \frac{3 \sqrt{3} i}{2}$$
z3 = 3/2 + 3*sqrt(3)*i/2
Sum and product of roots [src]
sum
               ___             ___
     3   3*I*\/ 3    3   3*I*\/ 3 
-3 + - - --------- + - + ---------
     2       2       2       2    
$$\left(-3 + \left(\frac{3}{2} - \frac{3 \sqrt{3} i}{2}\right)\right) + \left(\frac{3}{2} + \frac{3 \sqrt{3} i}{2}\right)$$
=
0
$$0$$
product
   /          ___\ /          ___\
   |3   3*I*\/ 3 | |3   3*I*\/ 3 |
-3*|- - ---------|*|- + ---------|
   \2       2    / \2       2    /
$$- 3 \left(\frac{3}{2} - \frac{3 \sqrt{3} i}{2}\right) \left(\frac{3}{2} + \frac{3 \sqrt{3} i}{2}\right)$$
=
-27
$$-27$$
-27
Numerical answer [src]
z1 = -3.0
z2 = 1.5 - 2.59807621135332*i
z3 = 1.5 + 2.59807621135332*i
z3 = 1.5 + 2.59807621135332*i
The graph
z^3+27=0 equation