Mister Exam

Derivative of y(x)=sqrt(3x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ 3*x + 5 
3x+5\sqrt{3 x + 5}
sqrt(3*x + 5)
Detail solution
  1. Let u=3x+5u = 3 x + 5.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(3x+5)\frac{d}{d x} \left(3 x + 5\right):

    1. Differentiate 3x+53 x + 5 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      2. The derivative of the constant 55 is zero.

      The result is: 33

    The result of the chain rule is:

    323x+5\frac{3}{2 \sqrt{3 x + 5}}

  4. Now simplify:

    323x+5\frac{3}{2 \sqrt{3 x + 5}}


The answer is:

323x+5\frac{3}{2 \sqrt{3 x + 5}}

The graph
02468-8-6-4-2-1010010
The first derivative [src]
      3      
-------------
    _________
2*\/ 3*x + 5 
323x+5\frac{3}{2 \sqrt{3 x + 5}}
The second derivative [src]
     -9       
--------------
           3/2
4*(5 + 3*x)   
94(3x+5)32- \frac{9}{4 \left(3 x + 5\right)^{\frac{3}{2}}}
The third derivative [src]
      81      
--------------
           5/2
8*(5 + 3*x)   
818(3x+5)52\frac{81}{8 \left(3 x + 5\right)^{\frac{5}{2}}}
The graph
Derivative of y(x)=sqrt(3x+5)