Integral of sqrt(3x+5) dx
The solution
Detail solution
-
Let u=3x+5.
Then let du=3dx and substitute 3du:
∫3udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫udu=3∫udu
-
The integral of un is n+1un+1 when n=−1:
∫udu=32u23
So, the result is: 92u23
Now substitute u back in:
92(3x+5)23
-
Now simplify:
92(3x+5)23
-
Add the constant of integration:
92(3x+5)23+constant
The answer is:
92(3x+5)23+constant
The answer (Indefinite)
[src]
/
| 3/2
| _________ 2*(3*x + 5)
| \/ 3*x + 5 dx = C + --------------
| 9
/
∫3x+5dx=C+92(3x+5)23
The graph
___ ___
10*\/ 5 32*\/ 2
- -------- + --------
9 9
−9105+9322
=
___ ___
10*\/ 5 32*\/ 2
- -------- + --------
9 9
−9105+9322
-10*sqrt(5)/9 + 32*sqrt(2)/9
Use the examples entering the upper and lower limits of integration.