Mister Exam

Derivative of y=sqrt3x+5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _____    
\/ 3*x  + 5
3x+5\sqrt{3 x} + 5
sqrt(3*x) + 5
Detail solution
  1. Differentiate 3x+5\sqrt{3 x} + 5 term by term:

    1. Let u=3xu = 3 x.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      32x\frac{\sqrt{3}}{2 \sqrt{x}}

    4. The derivative of the constant 55 is zero.

    The result is: 32x\frac{\sqrt{3}}{2 \sqrt{x}}


The answer is:

32x\frac{\sqrt{3}}{2 \sqrt{x}}

The graph
02468-8-6-4-2-1010020
The first derivative [src]
  ___   ___
\/ 3 *\/ x 
-----------
    2*x    
3x2x\frac{\sqrt{3} \sqrt{x}}{2 x}
The second derivative [src]
   ___ 
-\/ 3  
-------
    3/2
 4*x   
34x32- \frac{\sqrt{3}}{4 x^{\frac{3}{2}}}
The third derivative [src]
    ___
3*\/ 3 
-------
    5/2
 8*x   
338x52\frac{3 \sqrt{3}}{8 x^{\frac{5}{2}}}
The graph
Derivative of y=sqrt3x+5