Mister Exam

Other calculators

Derivative of ln^4*(sqrt(3*x+5))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4/  _________\
log \\/ 3*x + 5 /
log(3x+5)4\log{\left(\sqrt{3 x + 5} \right)}^{4}
log(sqrt(3*x + 5))^4
Detail solution
  1. Let u=log(3x+5)u = \log{\left(\sqrt{3 x + 5} \right)}.

  2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

  3. Then, apply the chain rule. Multiply by ddxlog(3x+5)\frac{d}{d x} \log{\left(\sqrt{3 x + 5} \right)}:

    1. Let u=3x+5u = \sqrt{3 x + 5}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx3x+5\frac{d}{d x} \sqrt{3 x + 5}:

      1. Let u=3x+5u = 3 x + 5.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx(3x+5)\frac{d}{d x} \left(3 x + 5\right):

        1. Differentiate 3x+53 x + 5 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          2. The derivative of the constant 55 is zero.

          The result is: 33

        The result of the chain rule is:

        323x+5\frac{3}{2 \sqrt{3 x + 5}}

      The result of the chain rule is:

      32(3x+5)\frac{3}{2 \left(3 x + 5\right)}

    The result of the chain rule is:

    6log(3x+5)33x+5\frac{6 \log{\left(\sqrt{3 x + 5} \right)}^{3}}{3 x + 5}

  4. Now simplify:

    3log(3x+5)34(3x+5)\frac{3 \log{\left(3 x + 5 \right)}^{3}}{4 \left(3 x + 5\right)}


The answer is:

3log(3x+5)34(3x+5)\frac{3 \log{\left(3 x + 5 \right)}^{3}}{4 \left(3 x + 5\right)}

The graph
02468-8-6-4-2-101020-10
The first derivative [src]
     3/  _________\
6*log \\/ 3*x + 5 /
-------------------
      3*x + 5      
6log(3x+5)33x+5\frac{6 \log{\left(\sqrt{3 x + 5} \right)}^{3}}{3 x + 5}
The second derivative [src]
     2/  _________\ /         /  _________\\
9*log \\/ 5 + 3*x /*\3 - 2*log\\/ 5 + 3*x //
--------------------------------------------
                          2                 
                 (5 + 3*x)                  
9(32log(3x+5))log(3x+5)2(3x+5)2\frac{9 \left(3 - 2 \log{\left(\sqrt{3 x + 5} \right)}\right) \log{\left(\sqrt{3 x + 5} \right)}^{2}}{\left(3 x + 5\right)^{2}}
The third derivative [src]
   /         /  _________\        2/  _________\\    /  _________\
27*\3 - 9*log\\/ 5 + 3*x / + 4*log \\/ 5 + 3*x //*log\\/ 5 + 3*x /
------------------------------------------------------------------
                                     3                            
                            (5 + 3*x)                             
27(4log(3x+5)29log(3x+5)+3)log(3x+5)(3x+5)3\frac{27 \left(4 \log{\left(\sqrt{3 x + 5} \right)}^{2} - 9 \log{\left(\sqrt{3 x + 5} \right)} + 3\right) \log{\left(\sqrt{3 x + 5} \right)}}{\left(3 x + 5\right)^{3}}