Mister Exam

Other calculators


y=x*exp(x)*sin(x)

Derivative of y=x*exp(x)*sin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x       
x*e *sin(x)
$$x e^{x} \sin{\left(x \right)}$$
(x*exp(x))*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. The derivative of is itself.

      The result is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/   x    x\                    x
\x*e  + e /*sin(x) + x*cos(x)*e 
$$x e^{x} \cos{\left(x \right)} + \left(x e^{x} + e^{x}\right) \sin{\left(x \right)}$$
The second derivative [src]
                                                x
((2 + x)*sin(x) - x*sin(x) + 2*(1 + x)*cos(x))*e 
$$\left(- x \sin{\left(x \right)} + 2 \left(x + 1\right) \cos{\left(x \right)} + \left(x + 2\right) \sin{\left(x \right)}\right) e^{x}$$
The third derivative [src]
                                                                   x
((3 + x)*sin(x) - x*cos(x) - 3*(1 + x)*sin(x) + 3*(2 + x)*cos(x))*e 
$$\left(- x \cos{\left(x \right)} - 3 \left(x + 1\right) \sin{\left(x \right)} + 3 \left(x + 2\right) \cos{\left(x \right)} + \left(x + 3\right) \sin{\left(x \right)}\right) e^{x}$$
The graph
Derivative of y=x*exp(x)*sin(x)