Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
The derivative of is itself.
The result is:
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
/ x x\ x
\x*e + e /*sin(x) + x*cos(x)*e
$$x e^{x} \cos{\left(x \right)} + \left(x e^{x} + e^{x}\right) \sin{\left(x \right)}$$
The second derivative
[src]
x
((2 + x)*sin(x) - x*sin(x) + 2*(1 + x)*cos(x))*e
$$\left(- x \sin{\left(x \right)} + 2 \left(x + 1\right) \cos{\left(x \right)} + \left(x + 2\right) \sin{\left(x \right)}\right) e^{x}$$
The third derivative
[src]
x
((3 + x)*sin(x) - x*cos(x) - 3*(1 + x)*sin(x) + 3*(2 + x)*cos(x))*e
$$\left(- x \cos{\left(x \right)} - 3 \left(x + 1\right) \sin{\left(x \right)} + 3 \left(x + 2\right) \cos{\left(x \right)} + \left(x + 3\right) \sin{\left(x \right)}\right) e^{x}$$