Mister Exam

Other calculators


e^sin(x)*cos(x)

Derivative of e^sin(x)*cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)       
E      *cos(x)
$$e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$
E^sin(x)*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2     sin(x)    sin(x)       
cos (x)*e       - e      *sin(x)
$$- e^{\sin{\left(x \right)}} \sin{\left(x \right)} + e^{\sin{\left(x \right)}} \cos^{2}{\left(x \right)}$$
The second derivative [src]
 /       2              \         sin(x)
-\1 - cos (x) + 3*sin(x)/*cos(x)*e      
$$- \left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$
The third derivative [src]
/       2         2    /       2              \     /     2            \                \  sin(x)
\- 3*cos (x) - cos (x)*\1 - cos (x) + 3*sin(x)/ + 3*\- cos (x) + sin(x)/*sin(x) + sin(x)/*e      
$$\left(3 \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - \left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + \sin{\left(x \right)} - 3 \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}}$$
The graph
Derivative of e^sin(x)*cos(x)