Mister Exam

Derivative of x^sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___
 \/ x 
x     
$$x^{\sqrt{x}}$$
  /   ___\
d | \/ x |
--\x     /
dx        
$$\frac{d}{d x} x^{\sqrt{x}}$$
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   ___                  
 \/ x  /  1      log(x)\
x     *|----- + -------|
       |  ___       ___|
       \\/ x    2*\/ x /
$$x^{\sqrt{x}} \left(\frac{\log{\left(x \right)}}{2 \sqrt{x}} + \frac{1}{\sqrt{x}}\right)$$
The second derivative [src]
   ___ /            2         \
 \/ x  |(2 + log(x))    log(x)|
x     *|------------- - ------|
       |      x           3/2 |
       \                 x    /
-------------------------------
               4               
$$\frac{x^{\sqrt{x}} \left(\frac{\left(\log{\left(x \right)} + 2\right)^{2}}{x} - \frac{\log{\left(x \right)}}{x^{\frac{3}{2}}}\right)}{4}$$
The third derivative [src]
   ___ /                     3                                   \
 \/ x  |   2     (2 + log(x))    3*log(x)   3*(2 + log(x))*log(x)|
x     *|- ---- + ------------- + -------- - ---------------------|
       |   5/2         3/2          5/2                2         |
       \  x           x            x                  x          /
------------------------------------------------------------------
                                8                                 
$$\frac{x^{\sqrt{x}} \left(- \frac{3 \left(\log{\left(x \right)} + 2\right) \log{\left(x \right)}}{x^{2}} + \frac{\left(\log{\left(x \right)} + 2\right)^{3}}{x^{\frac{3}{2}}} + \frac{3 \log{\left(x \right)}}{x^{\frac{5}{2}}} - \frac{2}{x^{\frac{5}{2}}}\right)}{8}$$
The graph
Derivative of x^sqrt(x)